摘要
针对装备故障数据量小、传统灰色预测模型GM(1,1)的精度受背景值影响大的问题,提出了一种基于背景值优化的改进GM(1,1)装备故障预测方法。该方法基于背景值的几何意义,从背景值与发展系数之间数量关系的角度出发,通过最小二乘法对二次参数进行估计,还原得到原始参数估计值,并结合新陈代谢对模型进行改进。导弹装备的故障预测实例表明,改进GM(1,1)模型较传统模型有更高的预测精度。
In view of the small amount of equipment fault prediction data and the great influence of background value on the accuracy of traditional grey prediction model GM(1,1),an improved GM(1,1)equipment fault prediction method based on background value optimization is proposed.Based on the geometric meaning of background value,from the point of view of the quantitative relationship between the background value and the coefficient of development,the least squares method is used to estimate the two original parameters,and combined with metabolism to improve the model.The failure prediction example of missile equipment shows that the improved GM(1,1)model has higher prediction accuracy than the traditional model.
作者
逯程
徐廷学
王虹
LU Cheng;XU Ting-xue;WANG Hong(Naval Aviation University,Yantai 264001,China;The 55th Institute,Joint Staff Department,Beijing 100094,China)
出处
《火力与指挥控制》
CSCD
北大核心
2018年第10期135-138,共4页
Fire Control & Command Control
基金
国家自然科学基金(51605487)
山东省自然科学基金资助项目(ZR2016FQ03)
关键词
故障预测
灰色预测模型
最小二乘法
新陈代谢
fault prediction
grey prediction model
least square method
metabolism