期刊文献+

融合多元信任机制的协同过滤算法 被引量:1

A Collaborative Filtering Algorithm by Fusing Multiple Trust Mechanism
下载PDF
导出
摘要 针对协同过滤算法的数据稀疏性问题,融合信任网络,提出了一种融合多元信任机制的协同过滤算法。首先,依据社会学中信任的定义,结合推荐系统中可利用的数据信息,对影响信任的主要因素(基本信任度、可靠度、影响力与自我取向)进行合理的量化,构建多元信任模型;其次,利用信任的可传递性,提出间接信任度计算公式,对用户信任矩阵进行有效扩充;最后,以信任度取代协同过滤算法中的相似度产生目标用户最近邻,进行推荐。最终,以MAE值为评价标准,通过与其他相关推荐算法的对比实验,结果表明该算法能够有效避免数据稀疏带来的推荐效果不佳问题,推荐精度得到了明显提高。 In order to solve the problem of data sparsity in collaborative filtering algorithm,we put forward an improved collaborative filtering algorithm by fusing multi trust mechanism.Firstly,we build multiple trust models in recommender system according to the definition of trust in sociology by quantifying the main factors that affect trust including basic trust degree,reliability,influence,and self orientation.Secondly,we propose the formula for calculating the degree of indirect trust and extend user trust matrix by using trust transitivity.Lastly,the user nearest neighbors are generated by trust degree instead of similarity,so as to get recommendation results.Finally,with MAE value as the evaluation criterion,through the comparison experiment with other relevant recommendation algorithms,it shows that this algorithm can effectively avoid the problem of poor recommendation effect caused by data sparsity,and the recommendation accuracy has been significantly improved.
作者 时念云 于镇涛 马力 SHI Nian-yun;YU Zhen-tao;MA Li(School of Computer and Communication Engineering,China University of Petroleum,Qingdao 266580,China)
出处 《计算机技术与发展》 2018年第11期120-123,共4页 Computer Technology and Development
基金 中央高校基本科研业务费专项基金资助项目(14CX02032A) 中国石油大学(华东)研究生创新工程基金资助项目(YCX2017065)
关键词 推荐系统 协同过滤 信任机制 数据稀疏性 信任传播 混合模型 recommendation system collaborative filtering trust mechanism data sparsity trust transfer hybrid model
  • 相关文献

参考文献7

二级参考文献138

  • 1李仁发,钟少宏.基于信任普适计算环境下的信任模型[J].科学技术与工程,2005,5(8):476-480. 被引量:10
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.

共引文献612

同被引文献10

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部