期刊文献+

Cooling pathways for deep Australian longwall coal mines of the future 被引量:11

Cooling pathways for deep Australian longwall coal mines of the future
下载PDF
导出
摘要 Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be required to focus their cooling resources more intensively to manage a challenging thermal environment where virgin coal temperatures over 50 °C at a depth of 500 m are expected. Currently, mine cooling systems are employed to maintain the wet bulb temperatures(WBT) to below 27 °C at which point the risks of heat stroke or other heat related issues are manageable. The capacities of these systems are in the range of 6–10 MW refrigeration power. The relationship between high working temperature environment and injury frequency rates is well established. Therefore, provision of appropriate cooling strategies and understanding their optimum performance and suitability are important to Australian coal mines of the future. This paper evaluates the underground temperature profiles of deep, gassy coal mines with propensity for spontaneous combustion and proposes the long term cooling pathways to effectively manage the thermal hazards. Thermodynamic modeling is performed on a longwall face and includes air leakage effects from goaf streams at various locations along the longwall face. The strategy summarizes the application of underground bulk air cooling, chilled water sprays on the shearer and the resulting temperature profiles. Considering the new mining projects planned for the Bowen Basin region, a review of implementable cooling strategies such as mid-gate mobile bulk air coolers(BACs), spot coolers, underground bulk air cooling and the use of chilled water to enhance the positional efficiency of cooling plants,are discussed in this paper. Finally, the comparison of ‘rental' versus ‘ownership' of cooling plants is analysed as part of long-term cooling strategies. Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be required to focus their cooling resources more intensively to manage a challenging thermal environment where virgin coal temperatures over 50 °C at a depth of 500 m are expected. Currently, mine cooling systems are employed to maintain the wet bulb temperatures(WBT) to below 27 °C at which point the risks of heat stroke or other heat related issues are manageable. The capacities of these systems are in the range of 6–10 MW refrigeration power. The relationship between high working temperature environment and injury frequency rates is well established. Therefore, provision of appropriate cooling strategies and understanding their optimum performance and suitability are important to Australian coal mines of the future. This paper evaluates the underground temperature profiles of deep, gassy coal mines with propensity for spontaneous combustion and proposes the long term cooling pathways to effectively manage the thermal hazards. Thermodynamic modeling is performed on a longwall face and includes air leakage effects from goaf streams at various locations along the longwall face. The strategy summarizes the application of underground bulk air cooling, chilled water sprays on the shearer and the resulting temperature profiles. Considering the new mining projects planned for the Bowen Basin region, a review of implementable cooling strategies such as mid-gate mobile bulk air coolers(BACs), spot coolers, underground bulk air cooling and the use of chilled water to enhance the positional efficiency of cooling plants,are discussed in this paper. Finally, the comparison of ‘rental' versus ‘ownership' of cooling plants is analysed as part of long-term cooling strategies.
作者 B.Belle M.Biffi
出处 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期865-875,共11页 矿业科学技术学报(英文版)
基金 support received from Anglo American Metallurgical Coal Anglo American Operations (Pty) Ltd in preparing this paper
关键词 COOLING Chilled water UNDERGROUND Positional efficiency Thermal HAZARD Cooling Chilled water Underground Positional efficiency Thermal hazard
  • 相关文献

同被引文献123

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部