期刊文献+

Numerical simulation and analysis of drill rods vibration during roof bolt hole drilling in underground mines 被引量:4

Numerical simulation and analysis of drill rods vibration during roof bolt hole drilling in underground mines
下载PDF
导出
摘要 Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes. Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes.
出处 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期877-884,共8页 矿业科学技术学报(英文版)
基金 the National Natural Science Foundation of China (Nos.51104055,51274087,51604094 and 51674098)
关键词 ROOF BOLT holedrilling DRILL rod VIBRATION VIBRATION RADIUS VIBRATION point amplitude Negative ANGULAR acceleration Roof bolt holedrilling Drill rod vibration Vibration radius Vibration point amplitude Negative angular acceleration
  • 相关文献

参考文献5

二级参考文献33

共引文献110

同被引文献60

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部