期刊文献+

Molecular mechanism of inflammatory pain

Molecular mechanism of inflammatory pain
下载PDF
导出
摘要 Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration(acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1(TRPV1) and the acid-sensing ion channel(ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation.G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain. Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration(acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1(TRPV1) and the acid-sensing ion channel(ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation.G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain.
出处 《World Journal of Anesthesiology》 2014年第1期71-81,共11页 世界麻醉学杂志
基金 Supported by(In part)Intramural Funding from Academia Sinica by grants from the National Science Council,Taiwan(NSC 102-2325-B-001-042 to Chen CC NSC 101-2321-B-008-001 to Sun WH)
关键词 Acid-sensing ION CHANNEL ACIDOSIS G-protein-coupled RECEPTOR Inflammation Proton-sensing ION CHANNEL Transient RECEPTOR potential V1 Acid-sensing ion channel Acidosis G-protein-coupled receptor Inflammation Proton-sensing ion channel Transient receptor potential V1
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部