摘要
Dexmedetomidine is indicated as a sedative agent in intensive care units(ICUs). While several clinical trials and two meta-analyses have compared this agent with propofol or midazolam, the results were variable depending on the specific end-point(e.g., duration of mechanical ventilation, ICU mortality, maintaining a target depth of sedation, incidence of delirium episodes, length of hospital stay). Hence, the effectiveness of this new agent vs the comparators seems to be controversial. Trial sequential analysis(TSA) is a statistical technique that can estimate the optimal, cumulative number of patients that would be needed to generate a conclusive result. We therefore applied a TSA model to the most recent meta-analysis evaluating dexmedetomidine. A total of 10 randomized controlled trials were included in our analysis. According to our results, the comparison of dexmedetomidine vs propofol showed no proof of incremental effectiveness for the end-points of length of ICUs stay and incidence of delirium episodes. In contrast, futility(i.e., proof of no incremental effectiveness) was demonstrated for the end-point of mechanical ventilation. Hence, the results for the comparison of dexmedetomidine vs propofol were inconclusive for the first two end-points; on the other hand, conclusiveness was reached for the third end-point. We conclude that the place of dexmedetomidine in therapy of critically ill patients is very uncertain and further controlled trials are still needed.
Dexmedetomidine is indicated as a sedative agent in intensive care units(ICUs). While several clinical trials and two meta-analyses have compared this agent with propofol or midazolam, the results were variable depending on the specific end-point(e.g., duration of mechanical ventilation, ICU mortality, maintaining a target depth of sedation, incidence of delirium episodes, length of hospital stay). Hence, the effectiveness of this new agent vs the comparators seems to be controversial. Trial sequential analysis(TSA) is a statistical technique that can estimate the optimal, cumulative number of patients that would be needed to generate a conclusive result. We therefore applied a TSA model to the most recent meta-analysis evaluating dexmedetomidine. A total of 10 randomized controlled trials were included in our analysis. According to our results, the comparison of dexmedetomidine vs propofol showed no proof of incremental effectiveness for the end-points of length of ICUs stay and incidence of delirium episodes. In contrast, futility(i.e., proof of no incremental effectiveness) was demonstrated for the end-point of mechanical ventilation. Hence, the results for the comparison of dexmedetomidine vs propofol were inconclusive for the first two end-points; on the other hand, conclusiveness was reached for the third end-point. We conclude that the place of dexmedetomidine in therapy of critically ill patients is very uncertain and further controlled trials are still needed.