期刊文献+

薄板弯曲问题边界元法分析中预条件GMRES算法

Preconditioned GMRES algorithm for the boundary element analysis of the thin plate bending problem
下载PDF
导出
摘要 为探讨预条件GMRES算法在求解弹性力学问题边界元法方程时的数值特性,以不同约束条件的薄板弯曲问题边界元分析为例,讨论了Jacobi、块Jacobi和对称Gauss-Sediel迭代作为预条件的三种预条件形式对GMRES收敛性的影响,并分析了其与约束条件的关系。分析表明:右块Jacobi和Jacobi预条件对该问题加速收敛效果更好,且对同类边界条件简支比固支收敛快,这与边界元法系数矩阵计算中的刚体位移原理有关。并且随问题规模的增大,预条件的GMRES算法效率比Gauss消去优势更明显;当问题自由度接近1万时,后者计算时间为前者的60倍。 To investigate the numerical properties of the preconditioning generalized minimum residual algorithm(GMRES)in solving equations formed in the boundary element(BE)analysis of elastic problems,the BE analysis of a thin plate bending problem was considered with different boundary conditions.A sample,the effects of a Jacobi preconditioner,block Jacobi preconditioner,and Gauss-Seidel iteration preconditioner on the convergence behavior of GMRES algorithm are investigated.The relationship between their performance and the boundary conditions of the studied problem is explored.The analysis shows that right block Jacobi and Jacobi preconditioners both exhibit desirable performance in accelerating convergence of the GMRES algorithm.In addition,their accelerating performance turns out to be better in problems with simply supported boundaries than fixed boundaries,which may result from the rigid displacement principle in the calculation of the BEM coefficient matrix.In addition,with the degree of the problems increasing,the advantage of GMRES algorithm becomes more obvious compared with the Gauss elimination method.When the degree of freedom of the studied problem reaches 10,000,the computation time of the latter is 60 times of the former.
作者 陈娟 肖洪天 高广运 CHEN Juan;XIAO Hongtian;GAO Guangyun
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第11期1809-1815,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(41672291 41772288) 高等学校博士点基金项目(20130072110016)
关键词 GMRES 边界元 预条件 收敛性 薄板弯曲 边界条件 GMRES BEM preconditioning convergence behavior thin-plate bending boundary condition
  • 相关文献

参考文献6

二级参考文献30

  • 1周树荃,戴华.求解大型对称特征值问题的块Chebyshev-Lanczos方法[J].南京航空学院学报,1989,21(4):22-28. 被引量:5
  • 2戴华.求解大型非对称特征问题的块Arnoldi方法[J].南京航空航天大学学报,1987,19(1):100-108.
  • 3[1]Guru Prasad K, Kane J H, et al. Precondition krylov solvers for BEA[J]. Int J Numer Meth Eng,1994,37:1651-1672.
  • 4[2]Leung C Y, Walker S P. Iterative solution of large three-dimensional BEM elastostatic analyses using the GMRES technique[J]. Int J Numer Meth Eng,1997,40:1651-1672.
  • 5[3]Cao Zhihao, Chen Guangxi, Hou Xiaodong. A con-vergent restarted GMRES algorithm [J]. 复旦大学学报(自然科学版),1997, 36(6):645-651.(Cao Zhihao, Chen Guangxi, Hou Xiaodong. A conver-gent restarted GMRES algorithm[J]. Journal of Fudan University(Natural Sciences),1997,36(6):645-651.(in English))
  • 6[4]Kane J H, Keyes D E, Guru Prasad K. Iterativesolution techniques in boundary element analysis[J]. Int J Numer Meth Eng,1991,31:1651-1672.
  • 7[5]Wang L, Semlyen A. Application of sparse eigenv-alue techniques to the small signal stability analysis of large power systems[J]. IEEE Trans. Power Systems,1990,5:635-642.
  • 8王人鹏,沈祖炎,钱若军.应用Krylov子空间方法求解边界元方程组[J].同济大学学报(自然科学版),1997,25(2):212-217. 被引量:7
  • 9Dai Hua,J Comput Math,2000年,18卷,365页
  • 10Dai Hua,Numer Math J Chin Univ,2000年,9卷,91页

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部