期刊文献+

模糊粒化非监督学习结合随机森林融合的旋转机械故障诊断 被引量:10

Fault Diagnosis of Rotating Machinery in Combination with Unsupervised Learning of Fuzzy Granulation and Random Forest Fusion
下载PDF
导出
摘要 在旋转机械的智能故障诊断中,复杂网络结构的非监督学习方法调节参数多,训练时间长,而结构简单的网络诊断准确率不够理想。针对以上问题,采用模糊信息粒化和稀疏自编码器搭建并行结构的学习网络,并行结构的稀疏自编码器同时对粒化后重新构成的多个有效参量信息自适应的进行特征提取,随后使用随机森林方法对提取的特征进行融合分类。实验结果表明该方法可以有效实现高精度故障诊断;且与常用的串行多网络处理结构相比,降低了网络参数调节的复杂度和多层网络的前后影响,并且提高了诊断精度,减少了训练时间。 In the intelligent fault diagnosis of rotating machinery,the unsupervised learning with the complex network structure has some problems,such as too large parameters,long training time and not satisfactory diagnosis accuracy with the simple learning structure.Aiming at the above problems,this paper uses fuzzy information granulation and sparse auto-encoder to construct a parallel learning network.At the same time,the sparse auto-encoder of the parallel structure adaptively extracts the features of multiple parameters reconstructed after granulation,and then the extracted features are fused and classified with random forest.Experimental results show that this method can identify faults with high accuracy.Compared with the commonly used methods with the serial network structure,the method not only reduces the network parameter adjustment complexity and the multi-layer network influence but also reduces the training time,while improving the diagnostic accuracy.
作者 温江涛 周熙楠 Wen Jiangtao;Zhou Xi′nan(Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University,Hebei Qinhuangdao 066004,China)
出处 《机械科学与技术》 CSCD 北大核心 2018年第11期1722-1730,共9页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51204145) 河北省自然科学基金项目(E2016203223 E2013203300)资助
关键词 旋转机械故障诊断 模糊信息粒化 稀疏自编码 随机森林 rotating machinery fault diagnosis feature extraction pattern recognition neural networks
  • 相关文献

参考文献7

二级参考文献92

  • 1吕锋,王秀青,杜海莲,辛涛.基于信息融合技术故障诊断方法与进展[J].华中科技大学学报(自然科学版),2009,37(S1):217-221. 被引量:12
  • 2SUN Q,TANDY.Singularity analysis using continuous wavelet transform for bearing fault diagnosis[J].Mechanical Systems and Signal Processing,2002,16 (6):1 025-1 041.
  • 3LIN RUIZHONG,ZHU SHANAN,WU HELEI,et al.Rolling bearings fault diagnosis based on energy operator demodulation approach[C]//Proceedings of the 4# Wolrd Congress on Intelligent Control and Automation,June 10-14,Shanghai,China,2002:2 723-2 726.
  • 4FU ZHENTANG,BROWN D J,HAYNES B P.A new method of non-stationary signal analysis for control motor bearing fault diaguosis[C]//WISP 2003,Budapest,Hungary,September 4-6,2003:99-104.
  • 5RANDALL R B,ANTONI J,CHOBASSRD S.The relationship between spectrual correlation and envelope analysis in the diagnostics of bearing faults and other cyclostartionary machine signals[J].Mechanical Systems and Signal Processing,2001,15(5):945-962.
  • 6ANTONI J,BONNARDOT F,RAAD A,et al.Cyclostationary modeling of rotating machine vibration siguals[J].Mechanical System and Signal Processing,2004(18):1 285-1 314.
  • 7林元烈.应用随机过程[M].第2版.北京:清华大学出版社,2003.
  • 8ANTONI I,GLOSSIOTIS G.Cyclostationary analysis of rolling-element beating vibration signals[J].Journal of Sound and Vibration,2001,248(5):829-845.
  • 9CAPDESSUS C,SIDAHMED M.Cyclostationary processes:application in gear faults early diagnosis[J].Mechanical Systems and Signal Processing,2000,14(3):371-385.
  • 10LI Li,QU LIANGSHENG.Cyclic statistics in rolling bearing diagnosis[J].Journal of Sound and Vibration,2003(267):253-265

共引文献113

同被引文献101

引证文献10

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部