摘要
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes(MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes(MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
基金
Supported by The Leukemia Foundation and NHMRC,the Victorian State Government Operational Infrastructure Support Scheme