期刊文献+

基于PSO算法的某型飞机起飞阶段参数辨识及性能分析

Parameter Identification and Performance Analysis of a Certain Aircraft Taking off Stage Based on PSO Algorithm
下载PDF
导出
摘要 飞机性能分析是飞行训练评估的重要组成部分具有重要的应用价值;结合某型军用战机起飞阶段飞参数据,研究了利用粒子群算法(PSO)进行参数辨识并进行飞机性能分析的问题;首先通过动力学建立了起飞性能数学模型;然后将动力学方程转化为以速度的平方为输入量,速度增量为输出量的状态方程,利用PSO进行识别并得到了待辨识的参数,并具有较高的精度;最后将辨识的参数代入动力学方程针对影响起飞性能的起飞质量和温度进行了分析,得到在极端条件下飞机起飞性能;可以为日后选择最佳性能飞机作战出动提供决策参考。 Aircraft performance analysis is an important part of flight training evaluation and has important application value.Combining with the flight parameter data of a military fighter during takeoff,the problem of parameter identification and aircraft performance analysis by particle swarm optimization(PSO)is studied.First,the mathematical model of take-off performance is established by dynamics,and then the dynamic equation is transformed into a state equation with the square of the velocity as the input and the increment of the velocity as the output.The parameters which are identified are identified by PSO and have high accuracy.Finally,the parameters of the identified parameters are replaced by the kinetic equation.The takeoff quality and temperature affecting take-off performance are analyzed to get the takeoff performance under extreme conditions.It can provide decision-making reference for selecting the best performance aircraft operation in the future.
作者 王奔驰 杜军 丁超 杨轩 Wang Benchi;Du Jun;Ding Chao;Yang Xuan(Air Force Engineering University,Aeronautics Engineering College,Xi'an 710038,China;63870 PLA,Huayin 741200,China)
出处 《计算机测量与控制》 2018年第11期272-276,共5页 Computer Measurement &Control
基金 国家自然科学基金(项目号11447174) 陕西省自然科学基础研究计划(2015JQ5155)
关键词 起飞阶段 PSO算法 参数辨识 性能分析 take-off stage PSO algorithm parameter identification performance analysis
  • 相关文献

参考文献10

二级参考文献49

  • 1何开锋,王文正,钱炜祺.根据风洞试验结果建立有尾翼导弹数学模型[J].实验流体力学,2004,18(4):62-66. 被引量:12
  • 2王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 3曾议,竺长安,沈连婠,齐继阳.基于群智能算法的设备布局离散优化研究[J].计算机集成制造系统,2007,13(3):541-547. 被引量:11
  • 4王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,1999..
  • 5Jeffrey Travis,Jim Kring.Labview大学实用教程(第三版)[M].北京:电子工业出版社,2008:206.
  • 6航空发动机控制讲义[M].中国民航飞行学院,2006.
  • 7Course outline CFM56-5B only, Line & Base Maintenance, CFMI, 2006.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization[A]. International Conference on Neural Networks [C]. Perth, Australia: IEEE Press, 1995:1942-1948.
  • 9Warner E P, Norton F H. Preliminary report on free flighttest[ R]. NASA Report No 70,1919.
  • 10Klein V, Mogan D R. Estimation of bias errors in measured airplane responses using maximum likelihood method [ R]. NASA TM-89059,1987:79-82.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部