期刊文献+

基于样本相关性及SVM的管道泄漏检测方法研究 被引量:7

Research on pipeline leakage detection method based on sample correlation and SVM
下载PDF
导出
摘要 分析当前煤层气生产现场的实际情况,针对生产数据不全的问题,提出采用模式识别的方法对煤层气管道微量泄漏进行判断。通过分析煤层气生产现场数据的相关性曲线,明确模式识别时样本的数量范围;分析已有的模式识别方法,提出一种基于SVM的泄漏识别方法;根据煤层气生产的实际情况,分析确定适合于管道泄漏检测的核函数,并给出完整的泄漏检测算法。通过实例对所提算法进行验证,实验表明该算法对已有煤层气长输管道SCADA系统是一个有益的补充。 The actual situation of current coalbed methane(CBM)production site is analyzed.For the problem of incomplete production data,the method of pattern recognition is used to judge the minimum leakage of CBM pipeline.The range of sample number for pattern recognition is determined by analyzing the correlation curve of production site data of CBM.A leakage recognition method based on SVM is proposed by analyzing the existing pattern recognition methods.According to the actual situation of CBM production,the kernel function suitable for pipeline leakage detection is analyzed and determined,and a complete leakage detection algorithm is given.The algorithm is verified with an example.The experimental result shows that the algorithm is a helpful supplement for SCADA system of CBM long?distance pipeline.
作者 何健安 高炜欣 袁鹏程 HE Jian’an;GAO Weixin;YUAN Pengcheng(Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells,Xi’an Shiyou University,Xi’an 710065,China;Ministry of Education Key Laboratory of Photoelectric Logging and Detecting of Gas and Oil,Xi’an Shiyou University,Xi’an 710065,China)
出处 《现代电子技术》 北大核心 2018年第23期118-122,共5页 Modern Electronics Technique
基金 西安石油大学研究生创新与实践能力培养计划资助项目(YCS18113048)~~
关键词 泄漏检测 相关性 样本数量 模式识别 支持向量机 核函数 leakage detection correlation sample number pattern recognition support vector machine kernel function
  • 相关文献

参考文献7

二级参考文献29

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 3PENG Xiyuan WU Hongxing PENG Yu.Parameter Selection Method for SVM with PSO[J].Chinese Journal of Electronics,2006,15(4):638-642. 被引量:4
  • 4赵光权,彭喜元,孙宁.带局部增强算子的微分进化改进算法[J].电子学报,2007,35(5):849-853. 被引量:30
  • 5严大凡.输油管道技术与管理[M].北京:石油工业出版社,1989..
  • 6PAI Pingfeng, HONG Weichiang. Support vector machines with simulated annealing algorithms in electricity load forecasting[ J]. Energy Conversion and Management, 2005, 46( 17 ) : 2669-2688.
  • 7RAINER S, KENNETH P. Differential evolution--A simple and efficient heuristic for global optimization over continuous spaces [ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 8CHEN Chongwei, CHEN Dezhao, CAO Guangzhi. An improved differential evolution algorithm in training and encording prior knowledge into feedforward networks with application in Chemistry [ J ]. Chemometrics and Intelligent Laboratory Sytems, 2002, 64( 1 ) :27-43.
  • 9RAINER S. Designing nonstandard filters with differential evoluation[ J ]. IEEE Signal Processing Magazine, 2005, 22( 1 ) : 103-106.
  • 10SANDRA P, THIEMO K. Differential evolution and particle swarm optimization in partitional clustering [ J ]. Computational Statistics & Data Analysis, 2006, 50 (5) : 1220- 1247.

共引文献172

同被引文献111

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部