期刊文献+

基于XGBoost特征选择的幕课翘课指数建立及应用 被引量:10

The Establishment and Application of Drop-Out-Index of MOOCs Based on XGBoost Feature Selection
下载PDF
导出
摘要 翘课行为反应了幕课的质量问题,也是在线教育的核心问题之一。该文通过对真实的在线教育数据进行分析,结合在线教育领域的先验知识,针对数据中的丰富海量的特征问题,提出了基于XGBoost特征重要度计算和分类的翘课特征选择方法,并建立了在线教育的翘课指数(DOI)。基于学堂在线数据集提取的海量特征的实证分析表明,基于XGBoost的特征选择方法比其他经典特征选择方法具有更好的效果。在数据集的不同时间点上使用翘课指数模型作翘课预测,验证了翘课指数的有效性。 Dropout of classes reflects the quality of MOOCs,which is the key issue of online education.In order to predict the dropout rate in advance,this paper presents an efficient prediction framework based on the analysis on real online education data and the prior knowledge of online education.This presented framework combines the feature importance learning and the selection by the classification algorithm of XGBoost,and establishes a Drop-Out-Index(DOI)for online courses.Experiments analysis on massive features extracted from the online-data of XueTang website shows that the feature selection method based on XGBoost achieves better results than other feature selection methods.The validity of DOI has also been verified by testing on different time points in the data set.
作者 宋国琴 刘斌 SONG Guo-qin;LIU Bin(Education and Information Technology Center,China West Normal University Nanchong Sichuan 637000;School of Computer Science and Engineering,University of Electronic Science and Technology of China Chengdu 611731)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第6期921-926,共6页 Journal of University of Electronic Science and Technology of China
基金 中央高校基本科研业务费基础研究项目(ZYGX2014J058) 四川省教育厅项目(16ZA0171)
关键词 翘课指数 特征选择 幕课 XGBoost drop out index feature selection MOOCs XGBoost
  • 相关文献

参考文献4

二级参考文献33

  • 1刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 2郑义,博士学位论文,1993年
  • 3Shen Y R,The Principles of Nonlinear Optics,1984年
  • 4Van Henten E J. Hemming J. Van Tuijl B A J. et al. An autonomous robot for harvesting cucumbers in greenhouses[J]. Autonomous Roheots, 2002. 13 : 241- 258.
  • 5Zhang l.i-bin. Yang Qing-hua. Xun Yi. el a/. Recog- nition of greenhouse cucumber fruit using computer vision [J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 989-996.
  • 6Yuan Ting, Xu Chen-guang, Ren X Y. el al. Detec ling lhe information of cucumber in greenhouse for picking based on NIR image[J]. Journal of Machine Learning Research, 2001,1 (3) : 211 244.
  • 7Hannan M W, Burks T F, Bulanon D M. A real lime machine vision algorithm for rohotic citrus harvesting [C]//St Joseph ASAE Mich: ASAE, 2007: ASAE Paper No. 073125.
  • 8刘杰,杜军平.基于Relief-F特征加权支持向量机的语义图像分类[J].中南大学学报(理工版),2011,42(增1);750-754.
  • 9Sun Yi-jun. Iterative RELIEF for feature weighting:Algorithms, theories, and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2007, 29(6) :1035-1051.
  • 10Tipping M E. Sparse Bayesian learning and the rele- vance vector machine [J]. Journal of Machine Learn- ing Research, 2001,1(3): 211-244.

共引文献154

同被引文献93

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部