期刊文献+

测压点分布对嵌入式大气数据传感系统计算精度的影响研究 被引量:2

Research on Orifices Distribution Effects on Accuracy of Flush Air Data Sensing System
下载PDF
导出
摘要 测压点是嵌入式大气数据传感(FADS)系统的数据来源,其分布形式直接影响到系统测量精度。基于牛顿模型和滤波算法建立FADS计算模型;以球形机头为例,设定飞行剖面的马赫数范围为4.30~15.79,高度范围为25~70km;得出测压点圆周角、圆锥角和非对称分布下大气参数的计算误差。结果表明:沿圆周方向增加测压点数量,可提高FADS系统测量精度,但存在门槛值,超过此门槛值效果有限;在测压点数量相同的情况下,增大圆锥角可明显提高FADS的测量精度;测压点的非对称分布则对测量精度没有影响。 Being the data source of flush air data sensing(FADS)system,the distribution of orifices had direct effects on the accuracy of FADS system.Numerical computations based on Newton model and filtering algorithm are conducted.For Spherical aircraft head as an example,virtual flight path covering Mach number 4.30~15.79,height 25~70 kilometers is defined.Spherical nose is presented for FADS orifices arrangement.Results of clock angle effect,cone angle effect and asymmetric distribution effect are presented and analyzed.Computational results show that increasing the number of pressure points along the circumference can improve the measurement accuracy of the FADS system.However,there is a threshold value.When the number of pressure points is the same,increasing the cone angle can significantly improve the measurement accuracy of FADS.The asymmetric distribution of the orifices has no effect on the measurement accuracies.
作者 王晓璐 刘战合 苗楠 王菁 Wang Xiaolu;Liu Zhanhe;Miao Nan;Wang Jing(School of Aeronautical Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;General Design Department,General Aviation Engineering Research Center of He’nan Province,Zhengzhou 450046,China)
出处 《航空工程进展》 CSCD 2018年第4期592-598,共7页 Advances in Aeronautical Science and Engineering
基金 航空科学基金(2016ZA55001 2014ZA55001) 河南省科技攻关计划(182102210444) 郑州航空工业管理学院青年骨干教师资助项目(2015-21)
关键词 嵌入式大气数据传感系统 测压点 圆周角影响 圆锥角影响 flush air data sening system orifices clock angle effect cone angle effect
  • 相关文献

参考文献8

二级参考文献56

  • 1张青富,保铮.求解超定线性方程组L_1─范数最优解的神经网络方法[J].电子学报,1996,24(1):97-100. 被引量:3
  • 2[4]朱定国,林燕珊,杨世均.航空测试系统[M].北京:国防工业出版社,1990.
  • 3[1]Whitmore S A,Timothy R C,Mark W N,et al.Application of a flush airdata sensing system to a wing leading edge(LE-FADS)[R].NASA,Flight Research Center,Edwards,CA.1993.
  • 4[2]Brent R C,Stephen A W,Edward A H.Flush airdata sensing(FADS)system calibration procedures and results for blunt forebodies[A].Jr.NASA Dryden Flight Research Center.Edwards,California.Jerry Borrer.NASA Johnson Soace Center.Houston,Texas.V.Eric Roback.NASA Langley Research Center[C].Norfolk,Virginia.1999.
  • 5[3]Shapiro A H.The dynamics and thermodynamics of compressible fluid flow,colume I,johns wiley sons[M].New York,1953,83-88,154.
  • 6[4]Haering E A.Airdata calibration techniques for measuring atmospheric wind profiles[J].Journal of Aircraft,1992,29(4):633-639.
  • 7[5]Klein L A.A boolean algebra approach to multiple sensor voting fasion[J].IEEE transactions on aerospace and electronic systems,1993,29(2):317-327.
  • 8Judy L Shin. Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system. NASA-TP-1627, 1980.
  • 9Terry J Larson, Paul M. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds. NASA-TP-1643, 1980.
  • 10Terry J Larson, Stuart G Flechner, Paul M. Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft. NASA-TP-1642, 1980.

共引文献37

同被引文献26

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部