期刊文献+

基于LK和FAST的时间序列图像快速配准算法 被引量:3

Fast registration algorithm of image sequence by time based on LK and FAST
下载PDF
导出
摘要 LK光流算法是一种精确高效的特征跟踪算法,能够较大幅度提高图像配准的精度和速度。针对时间序列图像的配准问题,基于LK光流算法,通过基于图像金字塔的方式跟踪改进后的FAST特征角点,采用一种鲁棒的单应矩阵估计算法解算配准参数,提出了一种基于LK光流和改进FAST特征的实时鲁棒配准算法。通过一组时间序列图像从配准精度和配准速度两个方面对所提出算法的性能进行了验证分析,平均重投影误差为0.16,平均处理速度为30 Hz。实验结果表明,该算法能够提取稳定的FAST角点,快速准确地跟踪匹配序列图像之间的特征,较好地解决时间序列图像的实时配准问题。 LK optical flow is an accurate and efficient feature tracking method which can be used to improve the performance of the image registration algorithm.For the registration problem of image sequence by time,a real-time and robust registration algorithm combining LK optical flow and improved FAST corners was proposed.The improved FAST corners was tracked by using the LK optical flow based on image pyramid and the registration parameters were calculated by adopting a robust homography estimation algorithm.In the experimental part,a real image sequence by time was used to verify the performance of the proposed algorithm from two aspects:registration accuracy and registration speed.The average re-projection error was 0.16 with the processing speed of 30 Hz.The experimental results show that the proposed algorithm can extract stable FAST corners and match the features between images efficiently and accurately,which solve the real-time registration problem of image sequence by time.
作者 荆滢 齐乃新 杨小冈 卢瑞涛 Jing Ying;Qi Naixin;Yang Xiaogang;Lu Ruitao(Department of Automation,Nanjing University of Science and Technology,Nanjing 210094,China;Department of Control Engineering,Rocket Force University of Engineering,Xi′an 710025,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第11期462-470,共9页 Infrared and Laser Engineering
基金 国家自然科学基金(61203189 61806209)
关键词 时间序列图像 图像配准 LK光流 FAST特征点 特征匹配 image sequence by time image registration LK optical flow FAST corner corner matching
  • 相关文献

参考文献6

二级参考文献47

  • 1张祖勋,张宏伟,张剑清.基于直线特征的遥感影像自动绝对定向[J].中国图象图形学报(A辑),2005,10(2):213-217. 被引量:19
  • 2王卫华,何艳,陈曾平.光电图像序列运动弱目标实时检测算法[J].光电工程,2006,33(4):14-18. 被引量:23
  • 3Barbara Z,Jan F.Image Registration Methods:a Survey[J].Image and Vision Computing,2003,21:977-1000
  • 4Burns J B,Hanson A R,Riseman E M.Extracting Straight lines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(4):425-445
  • 5Zhang Zuxun,Zhang Jianqing.Generalized Point Photogrammetry and Its Application[C].The 20th ISPRS Congress,Istanbul,Turkey,2004
  • 6Canny J.A Computational Approach to Edge Detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(6):679-698
  • 7Lin Hui, Du Peijun, Zhao Weichang, et al. Image registration based on corner detection and affine transformation[C]//IEEE International Congress on Image and Signal Processing, 2010, 5: 2184-2188.
  • 8Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features [C]//Proceedings of the European Conference on Computer Vision(ECCV), 2010: 778-792.
  • 9Rublee E, Rabaud V, Konolige K, et al. Orb: an efficient alternative to sift or surf [C]//Proc of IEEE International Conference on Computer Vision(ICCV), 2011: 2564-2571.
  • 10Leutenegger S, Chli M, Siegwart R. BRISK: binary robust invariant scalable keypoints [C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2011, 2548-2555.

共引文献76

同被引文献46

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部