期刊文献+

一类无穷区间上分数阶微分方程边值问题正解的存在性 被引量:6

Existence of Positive Solutions for a Class of Boundary Value Problems of Fractional Differential Equations on Infinite Interval
下载PDF
导出
摘要 考虑一类无穷区间上分数阶微分方程边值问题正解的存在性,用锥压缩-锥拉伸不动点定理和压缩映像原理,证明了该边值问题至少存在一个正解且正解唯一. We considered the existence of positive solutions for a class of boundary value problems of fractional differential equations on infinite intervals,and proved that there was at least one positive solution and unique positive solution for the boundary value problem by using the fixed point theorem of cone compression and cone expansion and the compressed image principle.
作者 廖秀 韦煜明 冯春华 LIAO Xiu;WEI Yuming;FENG Chunhua(Department of Public Course Teaching,Institute of Information Technology of GUET,Guilin 541004, Guangxi Zhuang Autonomous Region,China;School of Mathematics and Statistics, Guangxi Normal University,Guilin 541004,Guangxi Zhuang Autonomous Region,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1299-1306,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11361010) 广西自然科学基金(批准号:2014GXNSFAA118002) 广东省自然科学基金(批准号:2014A030310334)
关键词 分数阶微分方程 无穷区间 边值问题 不动点定理 正解 fractional differential equation infinite interval boundary value problem fixed point theorem positive solution
  • 相关文献

参考文献8

二级参考文献132

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2郭大钧,孙经先.非线性常微分方程泛函方法[M].济南:山东科学技术出版社.1994.
  • 3Podlubny 1. Fractional Differential Equations [ M]. New York: Academic Press, 1999.
  • 4Cannon J R. The Solution of the Heat Equation Subject to the Specification of Energy [ J 1- Quarterly of Applied Mathematics, 1963, 21 (2): 155-160.
  • 5Ionkin N I. Solution of a Boundary Value Problem in Heat Conduction Theory with Nonlocal Boundary Conditions [ J ]. Differential Equations, 1977, 13 : 294-304.
  • 6Boucherif A. Second-Order Boundary Value Problems with Integral Boundary Conditions [ J ]. Nonlinear Analysis, 2009, 70( 1 ) : 364-371.
  • 7ZHANG Guo-wei, SUN Jing-xian. Multiple Positive Solutions of Singular Second-Order m-Point Boundary Value Problems [J].J Mathematical Analysis and Applications, 2006, 317(2) : 442-447.
  • 8Goodrich C S. Existence of a Positive Solution to a Class of Fractional Differential Equations [ J]. Applied Mathematics Letters, 2010, 23 (9) : 1050-1055.
  • 9BAI Zhan-bing, LU Hai-shen. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation [ J ]. Mathematical Analysis and Applications, 2005, 311 : 495-505.
  • 10ZHANG Shu-qin. Positive Solutions for Boundary-Value Problems of Nonlinear Fractional Differential Equations [ J ]. Electronic Journal of Differential Equations, 2006, 36 : 1-12.

共引文献88

同被引文献39

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部