期刊文献+

超弱变分方法在一类介质散射问题数值计算中的应用

Application of Ultra Weak Variational Method to Numerical Calculation of a Class of Scattering Problem by Medium
下载PDF
导出
摘要 应用超弱变分方法数值求解一类时谐波被介质散射的问题.在区域被人工吸收边界截断的基础上,根据间断有限元(DG)方法导出超弱变分公式,并利用平面波函数的逼近性质去近似场的局部性态,将问题转化到网格边界上求解.结果表明,该算法能有效地数值模拟介质散射问题,适用于大波数情形,收敛速度较快.数值模拟验证了算法的可行性和有效性. We applied ultra weak variational method tonumerically solve a class of time harmonic scattering problem by medium.On the basis of truncation of the domain by artificial absorbing boundary,we derived ultra weak variational formula according tothe discontinuous Galerkin(DG)method,and used the approximation property of plane wave functions to approximate the local behavior of the field,then transformed the problem to the solution of the network boundary.The results show that the algorithm can effectively simulatethe medium scattering problem,and is suitable for the case of bigwave number with fast convergence rate.Numerical simulations verify the feasibility and validity of the algorithm.
作者 栾天 王春艳 张威 LUAN Tian;WANG Chunyan;ZHANG Wei(School of Mathematics and Statistics,Beihua University,Jilin 132013,Jilin Province,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1385-1390,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年科学基金(批准号:11701013 11601014) 吉林省教育科学"十三五"规划一般项目(批准号:GH170094) 吉林省教育厅科学技术研究项目(批准号:JJKH20170022KJ 2015155) 吉林省自然科学基金(批准号:20160101264JC)
关键词 超弱变分方法 DG方法 介质散射 ultra weak variational method discontinuous Galerkin(DG)method medium scattering
  • 相关文献

参考文献4

二级参考文献25

  • 1Courion D. Near-Field Microscopy and Near-Field Optics [M]. London: Imperial College Press, 2003.
  • 2Carney'P, Schotland J. Inside Out: Inverse Problems and Applications [M]. London: Cambridge University Press, 2003.
  • 3SUN Jin, Carney P, Schotland J C. Strong Tip Effects in Near Field Scanni.ng Optical Tomography [J]. J Appl Phys, 2007, 102(10): 103103.
  • 4Farakawa H, Kawata S. Analysis of Image Formation in a Near Field Scanning Optical Microscope: Effects of Multiple Scattering [J]. Opt Commun, 1996, 132(1/2) : 170-178.
  • 5Tanaka K, Tanaka M, Omoya T. Boundary Integral Equation for a Two Dimensional Simulator of a Photon Scanning Tunneling Microscopy [J]. J Opt Soc Am A, 1998, 15(7): 1918-1931.
  • 6Novomy I., Pohl D, Regli P. Near Field, Far Fieldand Imaging Properties of the 2D Aperture SNOM [J]. Ultramicroscopy, 1995, 57 : 180-188.
  • 7Stojek M. Least-Squares Trefftz-Type Elements for the Helmholtz Eqaution [J]. Int J Numer Meth Eng, 1998, 41(5): 831 849.
  • 8Monk P, WANG Da-qing. A Least-Squares Method for the Helmholtz Equation [J]. Comput Methods Appl Mech Eg, 1999, 175(1/2): 121-136.
  • 9Barnett A H, Betcke T. An Exponentially Convergent Nonpolynomial Finite Element Method for Time-Harmonic Scattering from Polygons [J]. SIAM J Sci Comput, 2011, 32(3) : 1417-1441.
  • 10ZHENG En-xi, MA Fu-ming. A Least-Squares Non-polynomial Finite Element Method for Solving the Polygonal- Line Grating Problem [J]. Journal of Mathematical Analysis and Applications, 2013, 397(2): 550 -560.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部