期刊文献+

大缸径点燃式天然气发动机爆震的影响因素 被引量:5

Knock Impact Factors in a Large Bore SI CNG Engine
下载PDF
导出
摘要 爆震被认为是缸内燃烧火焰传播过程中末端混合气局部热点自燃引起的压力振荡.通过抑制局部热点自着火的反应速率可以降低爆震强度.通过一台缸径为190,mm的天然气发动机,研究不同过量空气系数对降低爆震强度的影响.在过量空气系数较小的工况下,当自着火发生时可以观察到压力振荡;在过量空气系数较大的工况下,当自着火发生时爆震强度较微弱.爆震强度随着缸内最高温度和最大压力变化而变化.在过量空气系数大于1.45的工况下,爆震的发生由局部热点反应速率决定;而在过量空气系数小于1.45的工况下,爆震的发生受自着火出现时刻控制. The knock intensity is thought to be decreased by suppressing the reaction rate of auto-ignition.The effect of the mixture dilution which decreases the reaction rate on the knock intensity was investigated by using a large bore SI CNG engine.In the case of low dilution,the pressure oscillation was observed when the auto-ignition of the end gas occurred.On the other hand,in the case of high dilution,there was the condition that the knock intensity was weak even if the end gas auto-ignited.The knock intensity was shown as a function of the maximum temperature and the maximum pressure which affected the reaction rate.These results suggest that the condition that the knock occurs is controlled by the reaction rate in the case of high dilution although it is controlled by the auto-ignition timing of the end gas in the case of low dilution.
作者 吴重敏 李铁 邓康耀 Wu Chongmin;Li Tie;Deng Kangyao(Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiaotong University,Shanghai 200240,China;State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China;Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiaotong University,Shanghai 200240,China)
出处 《内燃机学报》 EI CAS CSCD 北大核心 2018年第6期507-511,共5页 Transactions of Csice
基金 国家自然科学基金资助项目(91541104) 上海市政府间国际科技合作资助项目(17590711000)
关键词 天然气发动机 自着火 爆震 compressed natural gas engine auto-ignition knocking
  • 相关文献

参考文献3

二级参考文献34

  • 1姜哲,郭骅.内燃机气缸压力频谱分析[J].内燃机学报,1989,7(3):251-258. 被引量:19
  • 2武得钰,顾笑映,李继军,王良煜,傅茂林,李建权.火花点火发动机爆震燃烧研究的发展与现状(Ⅰ)[J].车用发动机,1995(5):1-6. 被引量:11
  • 3Pschinger F. Regularities of Cylinder Pressure Oscillation and Their Effects on Combustion Process and Noise [C]. SAE Paper 872248,1987.
  • 4Simona S Merola, Bianca M Vagheco. Knock Investigation by Flame and Radical Species Detection in Spark Ignition Engine for Different Fuels [J]. Energy Conversion and Management,2007,48 (11) :2897-2910.
  • 5Ettefagh M M, Sadeghi M H,Pirouzpanah V, et al. Knock Detection in Spark Ignition Engines by Vibration Analysis of Cylinder Block:a Parametric Modeling Approach[J]. Mechanical Systems and Signal Processing, 2008,22 (6) :1495-1514.
  • 6Nobuyuki Kawahara,Eiji Tomita. Visualization of AutoIgnition and Pressure Wave During Knocking in a Hydrogen Spark-Ignition Engine[J]. International Journal of Hydrogen Energy,2009,34 (7) :3156-3163.
  • 7Crocker J. Model of Diesel Engine Noise Using Coherence [C]. SAE Paper 790362,1979.
  • 8Lighthill M J. On Sound Generated Aerodynamically, Parts I:General theory [J]. Proceedings of the Royal Society, 1952,211 (A) :564-587.
  • 9Lighthill M J. On Sound Generated Aerodynamically, Parts II:Turbulence as a source of sound [J]. Proceedings of the Royal Society, 1954,222 (A) : 1-32.
  • 10Lighthill M J. Viscosity Effects in Sound Waves of Finite Amplitude [M]. Cambridge:Cambridge University Press, 1956:250-351.

共引文献39

同被引文献30

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部