期刊文献+

基于有理四次Hermite插值和PSO的EMD包络线拟合算法 被引量:4

An EMD Envelope Fitting Algorithm Based on Rational Quadratic Hermite Interpolation and PSO
下载PDF
导出
摘要 针对经典三次样条插值在EMD分解中存在undershoot现象,模态混叠问题及分段三次Hermite插值不够灵活等问题,提出一种基于有理四次Hermite插值和PSO的EMD包络线算法.该算法利用有理四次Hermite中的形状参数调整曲线形状,并采用粒子群优化算法从曲线簇中找到最优平滑包络线.通过仿真信号实验和非平稳信号实验,表明该方法能够有效克服传统方法带来的undershoot问题,改善模态混叠效应,同时分解后的IMF分量正交性和能量保存度指标亦均优于经典CSI方法和PCHI方法. In Empirical mode decomposition(EMD)method,the upper and lower envelopes fitted by cubic spline interpolation(CSI)may often occur undershoots phenomenon and mode mixing problem.The Piecewise Cubic Hermite interpolation(PCHI)is not flexible enough.A new quadratic Hermite interpolation algorithm for EMD envelope based on PSO is proposed.The algorithm can adjust the shape of the curve with the shape parameters,and find the optimal smooth envelope by PSO.The experimental result of simulation signal and nonstationary signals show that,the proposed algorithm can effectively overcome the undershoot problem caused by the traditional method,improve the modal aliasing effect,the IO and IEC of the decentralized IMF components are superior to the traditional method.
作者 刘毅 宋余庆 刘哲 LIU Yi;SONG Yu-qing;LIU Zhe(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第11期2761-2767,共7页 Acta Electronica Sinica
基金 江苏省普通高校研究生科研创新计划(No.CXZZ11_0575) 国家自然科学基金(No.61772242 No.61402204 No.61572239) 江苏大学高级人才科研启动基金(No.14JDG141) 中国博士后面上项目(No.2017M611737) 镇江市社会发展项目(No.SH2016029)
关键词 粒子群优化 经验模态分解 有理Hermite插值 包络拟合 particle swarm optimization empirical mode decomposition rational hermite interpolation envelopes fitting
  • 相关文献

参考文献3

二级参考文献33

  • 1刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:121
  • 2胡维平,莫家玲,龚英姬,赵方伟,杜明辉.经验模态分解中多种边界处理方法的比较研究[J].电子与信息学报,2007,29(6):1394-1398. 被引量:32
  • 3DEBOOR C, HOLLIG K, SABIN M. High accuracy geometric Her- mite interpolation [ J]. Computer Aided Geometric Design, 1987, 4 (4) : 269 - 278.
  • 4FANG LIAN. G3 approximation of conic sections by quintic polyno- mial curves [J]. Computer Aided Geometric Design, 1999, 16(7): 755 - 766.
  • 5LORENTZ R A. Multivariate Hermite interpolation by algebraic pol- ynomials: a survey [ J]. Journal of Computational and Applied Mathematics, 2000, 122(2): 167-201.
  • 6GFRERRER A, ROSCHEL O. Blended Hermite interpolations [ J].Computer Aided Geometric Design, 2001, 18(9) : 865 - 873.
  • 7YONG JUNHAI, CHENG FUHUA. Geometric Hermite curves with minimum strain energy [ J]. Computer Aided Geometric Design, 2004, 21(3): 281-301.
  • 8HALL C A, MEYER W W. Optimal error bounds for cubic spline interpolation [ J]. Journal of Approximation Theory, 1976, 16(2): 105 - 122.
  • 9DUAN QI, DJIDJELI K, PRICE W G, et al. Rational cubic spline based on function values [ J]. Computer and Graphics, 1998, 22 (4) : 479 -486.
  • 10DUAN QI, DJIDJELI K, PRICE W G, et al. The approximation properties of some rational cubic splines [ J]. International Journal of Computer Mathematics, 1999, 72(2) : 155 - 166.

共引文献90

同被引文献45

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部