期刊文献+

基于芯片温度感知负载调度的数据中心能耗优化 被引量:1

Chip Temperature-aware Workload Scheduling-based Power Consumption Optimization of Data Center
下载PDF
导出
摘要 数据中心的高能耗日益成为限制其快速发展的瓶颈问题,通过服务器集群的负载调度可以有效改善数据中心热环境并实现节能降耗。传统的入口温度感知负载调度只考虑了芯片温度过高对服务器工作可靠性的影响,而没有意识到芯片温度过低导致的冷却能耗浪费。基于热循环系数矩阵和服务器传热模型提出的芯片温度感知负载调度策略通过合理优化负载分配避免了服务器的过冷和过热,并降低了数据中心的冷却系统功耗。将芯片温度感知负载调度策略应用到典型的数据中心模型,仿真结果表明:芯片温度感知负载调度策略可以有效实现数据中心节能。 The energy consumption of data center has increasingly become a bottleneck in its rapid development.To improve the energy efficiency of data center,the inlet temperature-aware workload scheduling is commonly adopted to minimize the cooling power,but the over-cooling of server is overlooked.On the basis of the heat recirculation coefficients matrix and the server heat transfer model,this paper proposed a chip temperature-aware workload scheduling strategy which can prevent servers from over-heating and over-cooling by assigning workload intelligently.Meanwhile,the cooling power consumption was also reduced.The chip temperature-aware workload scheduling strategy then was applied to a typical data center model.The simulation result showed that the chip temperature-aware workload scheduling can significantly reduce the power consumption of data center.
作者 谷丽君 白焰 GU Lijun;BAI Yan(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2018年第6期100-106,共7页 Journal of North China Electric Power University:Natural Science Edition
关键词 数据中心 芯片温度 负载调度 冷却功耗 CFD仿真 data center chip temperature workload scheduling cooling power consumption CFD simulation
  • 相关文献

参考文献1

二级参考文献10

  • 1Muroya K, Kinoshita T, Tanaka H. Power Reduction Ef- fect of Higher Room Temperature Operation in Data Cen- ters [C]//IEEE/FIP Network Operations & Management Symposium. Osaka: Japan, 2010:661 -673.
  • 2Martin M, Khattar M, Germagian M. High Density Heat Containment [J]. ASHRAE Journal, 2007, 12:38- 43.
  • 3Patanl~ar S V. Airflow and Cooling in Data Center [J]. Journal of Heat Transfer, 2010, 132(7): 1- 17.
  • 4Wang Z K, McReynolds A, Felix C, et al. Kratos: Auto- mated Management of Cooling Capacity in Data Centers With Adaptive Vent Tiles [C]// Proceedings of the ASME 2009.International Mechanical Engineering Congress 8z Exposition. Florida: USA, 2009:1 -10.
  • 5Shah A J, Krishnan N. Optimization of Global Data Cen- ter Thermal Management Workload for Minimal Environ- mental and Economic Burden [J]. IEEE Transaction on Components and Packaging Technology, 2008, 31(1): 39- 45.
  • 6Sharma R K, Bash C E, Patel C D, et al. Balance of Power: Dynamic Thermal Management for Internet Data Centers [J]. IEEE Internet Computing, 2005, 1: 42- 49.
  • 7Samadiani E, Joshi Y, Allen J K, et al. Adaptable Ro- bust Design of Multi-Scale Convective Systems Applied to Energy Efficient Data Centers [J]. Numerical Heat Trans- fer(part A), 2010, 57:69-100.
  • 8Samadiani E, Amur H, Krishnan B, et al. Coordinated Optimization of Cooling and IT Power in Data Centers [J]. Journal of Electronic Packaging, 2010, 132:031006 1 -14.
  • 9J. Rambo and Y. Joshi. Handbook of Numerical Heat Transfer [M]. New York: Taylor & Francis, 2006:825.
  • 10钱晓栋,李震.数据中心空调系统节能研究[J].暖通空调,2012,42(3):91-96. 被引量:118

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部