摘要
研究了一种基于遗传粒子群综合算法(GPSOA)的飞轮储能(FES)用的单绕组磁悬浮开关磁阻电机(SWBSRM)多目标优化设计方案。结合有限元分析(FEA),通过敏感性分析得到SWBSRM悬浮力与效率随主要尺寸参数变化的一般规律。在此基础上,利用GPSOA以悬浮力和效率为目标函数对SWBSRM进行了全局寻优,获得使悬浮力最大和效率最高的参数优化组合。利用FEA对比优化前后电机悬浮力、铁损及磁密的大小,验证了GPSOA多目标优化的有效性。
A multi-objective optimal design solution was studied based on genetic-particle swarm optimization algorithm(GPSOA)for single winding bearingless switched reluctance motor(SWBSRM).Universal rules of radial force and efficiency about main structure variations were given by combining finite element analysis(FEA)with sensitivity analysis.On this basis,the proposed GPSOA was applied to the optimal design of SWBSRM to obtain better optimal variations,with which the radial force was bigger and the efficiency was higher.The multi-objective optimal design based on GPSOA was verified by comparing the performance of final design with initial design by the FEA.
作者
孙玉坤
张宾宾
袁野
SUN Yukun;ZHANG Binbin;YUAN Ye(College of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China;College of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 210000,China)
出处
《电机与控制应用》
2018年第10期53-58,119,共7页
Electric machines & control application
基金
国家自然科学基金项目(51707082)
江苏省自然科学基金项目(BK20170546)
中国博士后科学基金项目(2017M620192)
关键词
飞轮储能
单绕组磁悬浮开关磁阻电机
遗传粒子群综合算法
多目标优化
flywheel energy storage(FES)
single winding bearingless switched reluctance motor(SWBSRM)
genetic-particle swarm optimization algorithm(GPSOA)
multi-objective optimization