期刊文献+

摩擦对反复镦压工艺的影响

Investigation of the effect of friction on cyclic channel die compression process
下载PDF
导出
摘要 反复镦压被认为是一种有应用前景的制备块体超细晶材料的方法.文中借助有限单元法研究了摩擦因子对镦压试样等效应变大小及分布、速度场以及变形载荷的影响.研究结果表明,由于摩擦的存在,试样同一截面各点沿纵向的流动速度并不一致.镦压后试样内部的等效应变分布不均匀,除角部区域小范围内等效应变较高外,其它部分中心区域等效应变较高.随摩擦因子增大,试样的平均等效应变略有增加,但等效应变分布的均匀性明显下降.最大变形载荷随摩擦因子的增大而显著增加.因此,应采取适当的措施降低摩擦的影响. Cyclic channel die compression(CCDC)process is regarded as a promising method for fabricating bulk ultra-fined materials.The effect of friction on the magnitude and distribution of effective strain,velocity field and deformation load were investigated by finite element method(FEM)in this paper.The results show that the velocity of same section is different along the longitudinal direction due to the existence of friction.The distribution of effective strain in the samples is inhomogeneous.The effective strain is high in the central area apart from some corner area.The average effective strain of the sample increases slightly with the increase of friction coefficient.But the distribution homogeneity of effective strain decreses obviously.The maximum deformation load increases quickly with the increase of friction coefficient.So appropriate measures should be taken to decrease the effect of friction.
作者 石凤健 陈杰 张诚 葛艳明 项宏福 SHI Fengjian;CHEN Jie;ZHANG Cheng;GE Yanming;XIANG Hongfu(School of Materials Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China;Jiangsu Jinyuan Forging Co.Ltd.,Liyang 213376,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2018年第5期637-641,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(51705219) 江苏省双创博士计划项目 江苏科技大学博士启动基金项目 江苏科技大学本科生创新计划项目
关键词 反复镦压 摩擦 等效应变 载荷 cyclic channel die compression friction effective strain load
  • 相关文献

参考文献6

二级参考文献62

  • 1石凤健,王雷刚,王海龙,汪建敏.等径角挤压工艺对固溶状态CuCrZr合金性能的影响[J].金属热处理,2007,32(1):81-83. 被引量:4
  • 2Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystaUine materials [J]. Progress in Materials Science, 2006, 51(4): 427-556.
  • 3Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Progress in Materials Science, 2006, 51(7): 881-981.
  • 4Kai M, Horita Z, Langdon T G. Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion [J]. Materials Science and Engineering, 2008, A488 (1-2): 117-124.
  • 5Shaarbaf M, Toroghinejad M R. Nano-grained copper strip produced by accumulative roll bonding process [J]. Materials Science and Engineering, 2008, A 473 (1-2):28-33.
  • 6Miura H, Sakai T, Uenol T, et al. Stimulated grain refinement in Ni-Fe alloy by coarse particles during warm multi-directional gorging [J]. Materials Science Forum, 2007, 550: 271-276.
  • 7Belyakov A, Sakai T, Miura H, et al. Substructure and internal stresses developed under warm severe deformation of austenitic stainless steel [J]. Scripta materialia, 2000, 42 (4): 319-325.
  • 8Miura H, Nakao Y, Sakai T. Enhanced grain refinement by mechanical twinning in a bulk Cu-30mass% Zn during multi-directional forging [J]. Materials Transactions, 2007, 48(9): 2539-2541.
  • 9Mironov S Y, Salishchev G A, Myshlyaev M M, et al. Evolution of misorientation distribution during warm ‘abc' forging of commercial-purity titanium [J]. Materials Science and Engineering, 2006, A418 (1-2): 257-267.
  • 10Yoon S C, Seo M H, Krishnaiah A, et ol. Finite element analysis of rotary-die equal channel angular pressing [J]. Materials Science and Engineering, 2008, A490 (1-2):289-292.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部