摘要
研究带阻尼的非等熵欧拉方程组初边值问题解的爆破现象。利用积分方法证明了当与初始动量有关的加权泛函充分大时,其解将在有限时刻爆破。将近来已知的爆破结果由等熵情形推广到非等熵情形,并在没有绝热常数不大于3的限制下得到了负初始熵情形的爆破结果。
The blowup phenomena of the solutions for the initial-boundary value problem of the non-isentropic Euler equations with damping is studied.It is proved that the solutions will blow up in finite time when a weighed functional associated with the initial momentum is large enough by using the integration method.Some recently known blow-up results are extended from the isentropic case to the non-isentropic case.And the blow-up result for the negative initial entropy case is obtained without the restriction that the adiabatic constant is not bigger than three.
作者
董建伟
杨永
DONG Jianwei;YANG Yong(School of Mathematics and Physics,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期131-134,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11501525)
河南省杰出青年基金(2018JQ0004)
河南省高等学校青年骨干教师资助计划项目(2013GGJS-142)
郑州航空工业管理学院青年科研基金(2015113001)
关键词
带阻尼的非等熵欧拉方程组
初边值问题
爆破
non-isentropic Euler equations with damping
initial-boundary value problem
blowup