摘要
研究了一类奇摄动非线性非局部分数阶微分方程Cauchy问题。首先求出了原问题的外部解。其次,利用伸长变量和合成展开法构造了初始层校正项。由此得到了解的形式渐近展开式。最后,利用微分不等式理论,讨论了问题解的渐近性态,得到了原奇摄动非线性非局部分数阶微分方程Cauchy问题解的一致有效的渐近估计式。
A class of Cauchy problems for the nonlinear nonlocal singular perturbation fractional order differential equation is studied.Firstly,the outer solution of the original problem is obtained.Secondly,using the stretched variables and the composing expansion method,the initial layers are constructed.Finally,using the theory of differential inequality,the asymptotic behavior of the solution to original Cauchy problem of nonlinear nonlocal singular perturbation fractional order differential equation is studied and the uniformly valid asymptotic estimation is discussed.
作者
冯依虎
汪维刚
莫嘉琪
FENG Yihu;WANG Weigang;MO Jiaqi(Department of Mathematics,Shanghai University,Shanghai 200436,China;Department of Electronics and Information Engineering,Bozhou College,Bozhou 236800,China;Department of Basic,Hefei Preschool Education College,Hefei 230011,China;School of Mathematics&Computer Science,Anhui Normal University,Wuhu 241003,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期145-150,共6页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(1127147)
安徽省教育厅自然科学基金(KJ2015A347)
安徽省高校优秀青年人才工程(gxyq ZD2016520)
关键词
非线性
分数阶方程
奇摄动
nonlinear
fractional order equation
singular perturbation