期刊文献+

Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal 被引量:7

Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal
下载PDF
导出
摘要 The combustion characteristics of blast furnace bag dust(BD) and three kinds of coal—Shenhua(SH) bituminous coal, Pingluo(PL) anthracite, and Yangquan(YQ) anthracite—were obtained via non-isothermal thermogravimetry. The combustion characteristics with different mixing ratios were also investigated. The physical and chemical properties of the four samples were investigated in depth using particle size analysis, Scanning electron microscopy, X-ray diffraction, X-ray fluorescence analysis, and Raman spectroscopy. The results show that the conversion rate of the three kinds of pulverized coals is far greater than that of the BD. The comprehensive combustion characteristics of the three types of pulverized coals rank in the order SH > PL > YQ. With the addition of BD, the characteristic parameters of the combustion reaction of the blend showed an increasing trend. The Coats–Redfern model used in this study fit well with the experimental results. As the BD addition increased from 5 wt% to 10 wt%, the activation energy of combustion reactions decreased from 68.50 to 66.74 k J/mol for SH, 118.34 to 110.75 kJ/mol for PL, and 146.80 to 122.80 kJ/mol for YQ. These results also provide theoretical support for the practical application of blast furnace dust for blast furnace injection. The combustion characteristics of blast furnace bag dust(BD) and three kinds of coal—Shenhua(SH) bituminous coal, Pingluo(PL) anthracite, and Yangquan(YQ) anthracite—were obtained via non-isothermal thermogravimetry. The combustion characteristics with different mixing ratios were also investigated. The physical and chemical properties of the four samples were investigated in depth using particle size analysis, Scanning electron microscopy, X-ray diffraction, X-ray fluorescence analysis, and Raman spectroscopy. The results show that the conversion rate of the three kinds of pulverized coals is far greater than that of the BD. The comprehensive combustion characteristics of the three types of pulverized coals rank in the order SH > PL > YQ. With the addition of BD, the characteristic parameters of the combustion reaction of the blend showed an increasing trend. The Coats–Redfern model used in this study fit well with the experimental results. As the BD addition increased from 5 wt% to 10 wt%, the activation energy of combustion reactions decreased from 68.50 to 66.74 k J/mol for SH, 118.34 to 110.75 kJ/mol for PL, and 146.80 to 122.80 kJ/mol for YQ. These results also provide theoretical support for the practical application of blast furnace dust for blast furnace injection.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第12期1412-1422,共11页 矿物冶金与材料学报(英文版)
基金 supported by the Natural Science Foundation for Young Scientists of China (No. 51804026) the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. 2017QNRC001) the National Natural Science Foundation of China (No. 51774032)
关键词 THERMOGRAVIMETRIC BAG DUST characteristic parameters COMBUSTION properties KINETIC model thermogravimetric bag dust characteristic parameters combustion properties kinetic model
  • 相关文献

同被引文献40

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部