摘要
为提高风速预测的准确性,引入局部加权线性回归算法,建立风速局部加权线性回归预测模型。该模型首先通过核函数对每一历史风速设置权重,产生新的风速数据集。其次,对新的数据集进行最小二乘线性拟合回归,建立风速局部加权线性回归模型。最后,根据该模型对风速进行短期预测。以某风电场的实测数据进行仿真验证,并与传统的ARIMA模型和BP神经网络预测模型对比,实验结果表明本文所提方法的有效性,为风速预测提供一种新方法。
In this paper,a short-term wind speed forecasting method based on local weighted linear regression is proposed,which is produced new wind data set by kernel function.Then a linear regression model is build based on the new set and apply the model to forcesting the short-term wind speed.Short-term wind speed forecasting based on local weighted linear regression model is established and simulated with the measured data of a wind farm,and compared with the traditional ARIMA model and BP neural network prediction model.The result shows the model proposed in this paper is efficacy,and provide a new method for the wind speed forecasting.
作者
张明瀚
王奎
王毅
ZHANG Minghan;WANG Kui;WANG Yi(School of Electrical Engineering,Nanjing Institute of Railway Technology,Nanjing 210031,China;Nanjing Qianzhi Electric Power Technology Company,Nanjing 210031,China)
出处
《能源研究与管理》
2018年第4期42-44,共3页
Energy Research and Management
基金
南京铁道职业技术学院青年科研基金项目"大数据在风电场风速及风功率预测中的应用研究"(YQ170019)
关键词
风速预测
线性回归
局部加权
wind speed forecasting
linear regression
local weighted