期刊文献+

基于Capped L1罚函数的组稀疏模型

The Sparse Group Model Based on Capped L1 Penalty
下载PDF
导出
摘要 近年来,稀疏化研究在人工智能领域非常流行。变量之间往往存在组结构,Group Lasso利用这种组结构并且可以实现变量组选择。将Capped L1罚推广到变量组选择情形下,提出能够和Group Lasso一样实现变量组选择的GroupCapped L1,然后利用块坐标下降算法求解Group Capped L1的最优化问题。通过实验证明与Group Lasso相比,所提出的Group Capped L1是一种有竞争力的方法。 The research of sparsity is quite hot in the field of artificial intelligence in recent years.The group structure which exists in variables is commonly seen in many settings.The Group Lasso uses the group structure and performs group selection.Extends the Capped L1 penalty to the group selection settings,and proposes the Group Capped L1which performs group selection like the Group Lasso.Uses the block co.ordinate descent algorithm to solve the optimization of the Group Capped L1.The experiments show that the Group Capped L1 proposed is a competitive method when compared with the Group Lasso.
作者 崔立鹏 于玲 范平平 吴宝杰 翟永君 CUI Li-peng;YU Ling;FAN Ping-ping;WU Bao-jie;ZHAI Yong-jun(Department of Electronic Information and Automation,Tianjin Light Industry Vocational Technical College,Tianjin 300350)
出处 《现代计算机(中旬刊)》 2018年第11期22-26,共5页 Modern Computer
关键词 稀疏化 变量组选择 Capped L1罚 Sparsity Variable Selection Capped L1 Penalty
  • 相关文献

参考文献2

二级参考文献78

  • 1Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 2Yuan M,Lin Y.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Series B,2006,68(1):49-67.
  • 3Turlach B A,Venables W N,Wright S J.Simultaneous variable selection[J].Technometrics,2005,47(3):349-363.
  • 4Tropp J A.Algorithms for simultaneous sparse approximation[J].Signal Processing,2006,86(3):589-602.
  • 5Quattoni A,Collins M,Darrell T.Transfer learning for image classification with sparse prototype representations[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Alaska,USA:IEEE,2008.1-8.
  • 6Schmidt M W,Murphy K P,Fung G,Rosales R.Structure learning in random fields for heart motion abnormality detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Alaska,USA:IEEE,2008.1-8.
  • 7Quattoni A,Carreras X,Collins M,Darrell T.An efficient projection for L1,∞ regularization[A].Proceedings of the 26th Annual International Conference on Machine Learning[C].Quebec,Canada:ACM,2009.857-864.
  • 8Vogt J E,Roth V.The group-Lasso:l1,∞ regularization versus l1,2 regularization[A].Proceedings of the 32nd DAGM conference on Pattern recognition[C].Darmstadt,Germany:Springer-Verlag,2010.252-261.
  • 9Huang J,Zhang T.The benefit of group sparsity[J].The Annals of Statistics,2010,38(4):1978-2004.
  • 10Sra S.Fast projections onto Q1,q-norm balls for grouped feature selection[J].Lecture Notes in Computer Science,2011:305-317.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部