摘要
本文研究双线性控制系统中的一类广义Lyapunov方程的半正定解.基于凸函数的局部极小解就是全局极小解这一良好性质,首先将广义Lyapunov方程的半正定解问题等价转化为凸优化问题.利用非单调线搜索技术确定步长,构造了非单调谱投影梯度方法求解这一等价问题.最后用数值例子验证了新方法的可行性和有效性.
In this paper,we consider the positive semidefinite solution to a class of generalized Lyapunov matrix equation,which arises in bilinear systems.Based on the good property that the local minimizer of a convex function is also the global minimizer,the positive semidefinite solution of the generalized Lyapunov equation is transformed into a convex optimization problem.By using the nonmonotone line search technique,we develop a nonmonotone spectral projected gradient method to solve this equivalent problem.Finally,numerical examples are presented to illustrate the feasibility and effectiveness of the new method.
作者
喻思婷
李春梅
段雪峰
YU Si-ting;LI Chun-mei;DUAN Xue-feng(School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin 541004)
出处
《工程数学学报》
CSCD
北大核心
2018年第6期673-683,共11页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(11561015
11761024)
广西自然科学基金(2016GXNSFFA380009
2016GXNSFAA380074
2017GXNSFBA198082)
广西密码学与信息安全重点实验室开放基金(GCIS201616)~~
关键词
广义Lyapunov方程
半正定解
非单调线搜索
投影梯度方法
generalized Lyapunov equation
positive semidefinite solution
nonmonotone line search
projected gradient method