期刊文献+

时间分数阶Fokker-Planck方程的Jacobi谱配置方法

Jacobi Collocation Method for Time Fractional Fokker-Planck Equations
下载PDF
导出
摘要 分数阶微分方程在工程、生物、金融等领域有广泛的应用.本文利用分数阶积分和微分公式的关系,针对一类带Dirichlet边值条件的时间分数阶Fokker-Planck方程,将其转化为与之等价的带有奇异核的积分微分方程,然后用高斯积分公式数值求解积分项,在时间和空间上都采用Jacobi谱配置法来离散求解积分微分方程.数值算例的结果表明,该方法是非常有效的,数值解具有谱精度,并且该方法容易推广到高维和非线性的情形. Fractional partial differential equations have recently been applied in various areas of engineering,science,finance,applied mathematics,bioengineering and others.In this paper,we convert the time fractional Fokker-Planck equation into equivalent integral equations with singular kernel,then the model solution is discretized in time and space with a spectral expansion of the Lagrange interpolation polynomial.Numerical results demonstrate the spectral accuracy and efficiency of the collocation spectral method.The proposed technique is not only easy to implement,but also can be easily extended to multidimensional problems.
作者 周琴 杨银 ZHOU Qin;YANG Yin(School of Information Science and Engineering,Hunan International Economics University,Changsha 410205;Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Xiangtan University,Xiangtan 411105)
出处 《工程数学学报》 CSCD 北大核心 2018年第6期684-692,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11671342) 湖南省自然科学基金(2018JJ2374) 湖南省教育厅重点项目(17A210)~~
关键词 CAPUTO分数阶导数 时间分数阶Fokker-Planck方程 Jacobi谱配置法 Caputo derivative time-fractional Fokker-Planck equation Jacobi collocation method
  • 相关文献

参考文献1

二级参考文献41

  • 1He J H. Nonlinear oscillation with fractional derivative and itsCahpinpalications//International Conference on Vibrating Engineering. China: Dalian, 1998:288-291.
  • 2He J H. Some applications of nonlinear fractional differential equations and therir approximations. Bull Sci Technol, 1999, 15:86-90.
  • 3Podlubny I. FractionalDifferentialEquations. New York: Academic Press, 1999.
  • 4Mainardi F. Fractional Calculus Continuum Mechanics. Springer Verlag, 1997:293-348.
  • 5Ahmad W M, EL-Khazali R. Fractional-oqder dynamical models of love. Chao, Solitons &: Fractals, 2007,33:1367-1375.
  • 6Huang F, Liu F. The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J, 2005, 46:317 -330.
  • 7Luchko Y, Gorenflo R. The initial value problem for some fractional differential equations with the Caputo derivatives. Preprint series A08-98. Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
  • 8Shawagfeh N T. Analytical approximate solutions for nonlinear fractional differential equations. Appl Math Comput, 2002, 131:517-529.
  • 9Samko G, Kilbas A A, Marichev O I. Fractional integrals and derivatives: theory and applications. Yverdon: Gordon & Breach, 1993.
  • 10Agrawal P, Kumar P. Comparison of five numerical schemes for fractional differential equations//Sabatier J, et al. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, 2007:43-60.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部