期刊文献+

改进的Retinex低照度图像增强算法研究 被引量:17

Research on the improved Retinex algorithm for low-illumination image enhancement
下载PDF
导出
摘要 针对Retinex算法处理低照度图像时会出现细节丢失、边缘模糊等现象,本文采用引导滤波和低秩分解对Retinex算法进行了改进。该算法在采用多尺度Retinex提升图像亮度、得到反射分量后,采用引导滤波和高频提升对图像的反射分量进行细节增强;然后,运用全局低秩分解算法去除稀疏噪声,有效地消除了低照度图像中的噪声,以及高频提升过程中产生的噪声。实验表明:该算法不仅能够有效的提高图像的亮度和对比度,同时也保留了原始图像中丰富的边缘和细节信息,并有效去除了图像噪声,图像的视觉效果与客观评价结果也都取得了较大提升。将该算法应用于低照度环境下的人脸检测,检测率也得到了提高。 Considering the problem of missing details and blurred edges induced in low-illumination images by the Retinex algorithm,a novel algorithm is proposed which uses guided filtering and low-rank decomposition to improve the Retinex algorithm.First,the multi-scale Retinex algorithm was used to enhance an image brightness and obtain the reflected image.Then,guided filtering and high-frequency raising were used on the reflected image to obtain the base level and detail level;thus,the detail layer was enhanced.Finally,the global low-rank decomposition algorithm was used to remove the sparse noise,which effectively eliminated the noises existing in the original low-illumination image and those generated during the detail enhancement process.Experimental results indicate that the algorithm can effectively improve the image brightness and contrast,while preserving and enhancing the rich edges and details information in the original image,and remove the noises.The visual effects and objective evaluation results were greatly improved.The algorithm was applied to face detection in a low-illumination environment,and the detection rate was also improved.
作者 牟琦 魏妍妍 李姣 李洪安 李占利 MU Qi;WEI Yanyan;LI Jiao;LI Hongan;LI Zhanli(College of Computer Science and Technology,Xi′an University of Science and Technology,Xi′an 710054,China;School of Mechanical Engineering,Xi′an University of Science and Technology,Xi′an 710054,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第12期2001-2010,共10页 Journal of Harbin Engineering University
基金 陕西省教育厅科研计划项目(16JK1497)
关键词 低照度图像 RETINEX 图像增强 引导滤波 低秩分解 稀疏噪声 low-illumination images Retinex image enhancement guided filtering low-rank decomposition sparse noise
  • 相关文献

参考文献6

二级参考文献56

  • 1胡韦伟,汪荣贵,方帅,胡琼.基于双边滤波的Retinex图像增强算法[J].工程图学学报,2010,31(2):104-109. 被引量:55
  • 2顾耀林,袁雪庚.McCann99算法的改进[J].中国图象图形学报,2005,10(12):1523-1528. 被引量:5
  • 3江巨浪,张佑生,薛峰,胡敏.保持图像亮度的局部直方图均衡算法[J].电子学报,2006,34(5):861-866. 被引量:64
  • 4李德军,赵文杰,谭海峰,陈永甜.一种基于双边滤波的图像边缘检测方法[J].计算机技术与发展,2007,17(4):161-163. 被引量:11
  • 5Wang Q,Ward R K.Fast imagevideo contrast enhancement based on weighted thresholded histogram equalization[J].IEEE Transactions on Consumer Electronics,2007,53(2):757-764.
  • 6Jobson D J,Rahman Z,Woodell G A.Properties and performance of a centersurround Retinex[J].IEEE Transactions on Image Processing,1997,6(3):451-462.
  • 7Choi D H,Jang I H.Color image enhancement based on single-scale Retinex with a JND-based nonlinear filter[C] //Proceedings of IEEE International Symposium on Circuits and Systems,New Orleans,2007:3948-3951.
  • 8Rahman Z,Jobson D J,Woodell G A.Multi-scale Retinex for color image enhancement[C] //Proceedings of International Conference on Image Processing,Lausanne,1996:1003-1006.
  • 9Chen X Q,Yan X P,Chu X M.Fast algorithms for foggy image enhancement based on convolution[C] //Proceedings of International Symposium on Computational Intelligence and Design,Wuhan,2008:165-168.
  • 10Marsi S,Impoco G,Ukovich A,et al.Using a recursive rational filter to enhance color images[J].IEEE Transactions on Instrumentation and Measurement,2008,57(6):1230-1236.

共引文献132

同被引文献147

引证文献17

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部