摘要
为了实现基于出租车轨迹数据的交通异常识别,首先以城市栅格地图模型为框架,提出了一种针对城市路网的多光谱分隔算法;并根据城市路网分别从区域增长与区域融合两种角度,实现了多光谱地图的分割。其次在分割的城市路网基础上,设计了交通异常的识别算法。算法依据单元区域内道路网络拓扑结构构建交通异常图;然后根据出租车路径选择模式的历史规律,计算每个单元区域内不同路径上的出租车轨迹流量的变化;最后根据三倍均方差指标识别单元区域内的交通异常。最后以哈尔滨为例,进行了算例分析。算例结果表明,提出的异常识别算法取得了良好的效果,验证了算法的有效性及准确性。
In order to realize the traffic anomaly recognition based on the taxi track data,the urban grid map model was taken as the framework firstly,a multi spectral separation algorithm for urban road network was proposed,and the multi spectral map segmentation was realized according to the urban road network from two angles of regional growth and regional integration.Secondly,based on the segmentation of urban road network,a traffic anomaly recognition algorithm was designed.According to the road network topology in the unit area,the algorithm constructed the traffic anomaly map,and then calculated the change of the taxi path flow on the different paths in each unit area according to the history law of the taxi path selection model.The traffic anomalies in the unit area were identified based on the three times mean square error index.Finally,a complete urban road network traffic anomaly map was constructed.At the end,the example of Harbin was taken as an example.The results show that the proposed anomaly recognition algorithm has achieved good results and verifies the effectiveness and accuracy of the algorithm.
作者
王雷
安实
杨海强
马晓龙
WANG Lei;AN Shi;YANG Hai-qiang;MA Xiao-long(School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China;Qingdao Hisense TransTech Co.,Ltd.,Qingdao 266061,China)
出处
《科学技术与工程》
北大核心
2018年第32期239-247,共9页
Science Technology and Engineering
基金
国家自然科学基金(51478151)资助
关键词
交通异常识别算法
多光谱分隔算法
路径选择模式
区域轨迹模式
交通异常图
traffic anomaly recognition algorithm
multispectral separation algorithm
path selection model
regional trajectory model
traffic anomaly map