期刊文献+

采用负相关学习的SVM集成算法 被引量:3

SVM Ensembles Algorithm Using Negative Correlation Learning
下载PDF
导出
摘要 为了平衡集成学习中多样性与准确性之间的关系,并提高决策分类器的泛化能力,提出一种基于负相关学习和AdaBoost算法的支持向量机(SVM)集成学习方法.将负相关学习理论融合到AdaBoost-SVM的训练过程中,利用负相关学习理论计算基分类器间的相关性,并根据相关性的值自适应调整基分类器的权重,进而得到加权后的决策分类器.在UCI数据集中进行仿真,结果表明:相较于传统的负相关集成学习算法和AdaBoost-SVM算法,所提出的方法分类准确率更高,泛化能力更好. In order to balance the relationship between diversity and accuracy in ensemble learning,and improve the generalization ability of decision classifier,a new support vector machine(SVM)ensemble learning method based on negative correlation learning and AdaBoost algorithm is proposed.The negative correlation learning theory is integrated into the training process of AdaBoost-SVM,and the correlation between the base classifiers is calculated by using the negative correlation learning theory.Furthermore,the weight of the base classifier is adjusted adaptively according to the correlation value.The simulation results of UCI dataset show that compared with the traditional negative correlation ensemble learning algorithm and AdaBoost-SVM algorithm,the proposed method can get higher classification accuracy and better generalization ability.
作者 洪铭 汪鸿翔 刘晓芳 柳培忠 HONG Ming;WANG Hongxiang;LIU Xiaofang;LIU Peizhong(College of Engineering,Huaqiao University,Quanzhou 362021,China)
机构地区 华侨大学工学院
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2018年第6期942-946,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61203242) 福建省泉州市科技计划项目(2014Z113 2014Z103) 华侨大学研究生科研创新能力培育计划资助项目(1400422003)
关键词 负相关学习 误差-分歧分解 AdaBoost-SVM 集成学习 分类器 negative correlation learning error ambiguilty decomposition AdaBoost-SVM ensemble learning classifier
  • 相关文献

参考文献5

二级参考文献126

  • 1李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 2王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4Cervantes J, Li Xiaoou, Yu Wen. SVM classification for large data sets by considering models of classes distribution. 6th Mexican International Conference on Artificial Intelligence, Special Session, 2008: 51-60.
  • 5Liu Tieyan, Yang Yiming, Wan Hao, et al. Support vector machines classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter, 2005, 7(1): 36-43.
  • 6Dong Jianxiong, Krzyzak A. Fast SVM training algorithm with decomposition on very large data sets. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(4): 603-618.
  • 7Nishida K, Kurta T. RANSAC-SVM for large-scale datasets. 19th International Conference on Pattern Recognition, 2008: 1-4.
  • 8Collobert R, Sinz F, Weston J, et al. Large scale transductive SVMs. Journal of Machine Learning Reasearch, 2006, 7(8): 1687-1712.
  • 9Kuncheva L I, Whitaker C J. Measures of diversity in classifter ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003, 21(2): 181-207.
  • 10Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion, 2005, 6: 21-36.

共引文献430

同被引文献23

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部