摘要
近年来,人群行为分析成为计算机视觉领域中备受关注的研究方向,主要运用于智能视频监控、人机交互、智能家居、视频检索等领域,以视频中运动人群的行为分析和理解为研究目的,对输入序列图像中的运动目标进行运动检测、匹配和建模.文中对人群行为分析的研究现状以及典型算法进行全面综述.首先对当前人群行为数据库进行简要介绍并分类比较;之后根据人群行为分析算法核心侧重点的不同,将人群行为分析算法分为基于特征和基于模型两大类,并根据每一大类各自的特点进行细分和比较,详细介绍了每类中具有代表性的算法,分析各算法的优缺点和适用的人群场景;最后总结了人群行为分析中的困难和挑战,对该研究领域的发展进行展望.
In recent years,crowd behavior analysis has become one of the hottest research points in computer vision.The main application is intelligent surveillance,human-computer interaction,intelligent household,video retrieval and other fields.It is a primary research goal to analyze behavior,understand crowd in video,execute motion detection,match and model the moving target when input video sequences.This paper summarizes research status,and the state-of-the-art of crowd behavior analysis.Firstly,the database for the current crowd behavior analysis is briefly introduced and compared.Then we classify the algorithm into feature-based and model-based ones according to the difference of the emphasis of crowd behavior analysis core algorithm,meanwhile we subdivide and compare the methods on the basis of respective characteristics of each category,and analyze their advantages,disadvantage and practical crowd scene of the representative algorithm in each category.Finally,we discuss the difficulty and challenge as well as the future research trends of crowd behavior analysis.
作者
王曲
赵炜琪
罗海勇
门爱东
赵方
Wang Qu;Zhao Weiqi;Luo Haiyong;Men Aidong;Zhao Fang(School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876;Research Center for Ubiquitous Computing Systems,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijing 100190;School of Software Engineering,Beijing University of Posts and Telecommunications,Beijing 100876)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2018年第12期2353-2365,共13页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61671264
61671077)
国家重点研发计划项目(2018YFB0505200)
北京邮电大学博士生创新基金资助项目(CX2018102)
移动计算与新型终端北京市重点实验室开放课题资助
关键词
人群行为识别
异常检测
运动轨迹
目标跟踪
crowd behavior analysis
anomaly detection
motion trajectory
target tracking