期刊文献+

碱激发剂模数对地质聚合物透水混凝土的性能影响研究 被引量:18

Effect of Modulus of Alkali-activator on the Properties of GGBS-Based Geopolymer Pervious Concrete
下载PDF
导出
摘要 利用高炉矿粉作为透水混凝土的胶凝材料,使用氢氧化钠及水玻璃作为碱激发液来激发高炉矿粉体系,制备了矿粉基地质聚合物透水混凝土。探讨了碱激发剂模数对使用高炉矿粉作为主要胶凝材料的地质聚合物透水混凝土力学性能、透水性能及孔隙率的影响;其中对于透水混凝土性能方面的研究主要涉及一定龄期下的抗压强度、抗折强度、透水速率。研究结果表明,矿粉基地质聚合物透水混凝土的28 d抗压强度随着模数的增大呈现先增大后减小的趋势,同时矿粉基地质聚合物透水混凝土的总孔隙率不断减小,相应的透水系数也在不断减小。其原因是水玻璃对矿粉地聚物体系的解凝作用导致的浆体流动度增加,进而降低了孔隙率。 Geopolymer pervious concrete was prepared through alkali-activating GGBS by activator of sodium hydroxide and waterglass.The effect of modulus of activator on the mechanical properties,water-permeating coefficient and porosity of geopolymer pervious concrete was evaluated and discussed.The results indicate that the compressive strength of geopolymer pervious concrete at 28 d first increased then decreased with the increase of modulus of activator.The total porosity and water-permeating coefficient decreased with the increase of modulus of activator.The reason is that the porosity decreased by the increase of fluidity of fresh concrete due to the decondensation of GGBS by waterglass.
作者 徐庆 李秋 陈伟 陈潇 刘志林 马浩森 XU Qing;LI Qiu;CHEN Wei;CHEN Xiao;LIU Zhi-lin;MA Hao-sen(School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China)
出处 《硅酸盐通报》 CAS CSCD 北大核心 2018年第11期3575-3580,3586,共7页 Bulletin of the Chinese Ceramic Society
基金 国家自然科学基金(51611530545)
关键词 模数 胶凝材料 透水混凝土 孔隙率 连通孔隙 流动性 modulus cementitious materials pervious concrete porosity connected pore fluidity
  • 相关文献

参考文献1

二级参考文献21

  • 1孔德玉,张俊芝,倪彤元,蒋靖,方诚.碱激发胶凝材料及混凝土研究进展[J].硅酸盐学报,2009,37(1):151-159. 被引量:93
  • 2刘志勇,马立国.高强混凝土的抗冻性与寿命预测模型[J].工业建筑,2005,35(1):11-14. 被引量:29
  • 3Palomo A, Grutzeck M W, Blanco M T. Alkai-activated Fly Ashes: A cement for the future [J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.
  • 4Ferández-Jiménez, A Palomo J G, Puertas F. Alkali-activated slag mortars mechanical strength behavior [J]. Cement and Concrete Research, 1999, 29(8): 1313-1321.
  • 5Bakharev T, Sanjayan J G, Cheng Y-B. Effect of admixtures on properties of alkali-activated slag concrete [J]. Cement and Concrete Research, 2000, 30(9): 1367-1374.
  • 6Wang Shaodong, Scrivener K L. 29Si and 27Al NMR study of alkali-activated slag cement [J]. Cement and Concrete Research, 2003, 33(5): 769-774.
  • 7Cengiz Duran Atis, Cahit Bilim, ?zlem Celik, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar [J]. Construction and Building Materials, 2006, 137(3): 1656-1663.
  • 8Zhang Yunsheng, Sun Wei, Chen Qianli, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer [J]. Journal of Hazardous Materials, 2007, 143(1/2): 206-213.
  • 9Shi Caijun, Ferández-Jiménez A. Stabilization/ solidification of hazardous and radioactive wastes with alkali-activated cements [J]. Journal of Hazardous Materials, 2007, 19(6): 470-474.
  • 10Duxson P, Provis J L, Lukey G C. The role of inorganic polymer technology in the development of green concrete [J]. Cement and Concrete Research, 2007, 37(12): 1590-1597.

共引文献16

同被引文献222

引证文献18

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部