摘要
利用值分布理论对一类微差分方程f(z)~n+P(f)=β_1e^(α1^z)+β_2e^(α2^z)+β_3e^(α3^z)的整函数解的存在性、增长性和零点收敛指数进行了研究,其中α_i,β_i(i=1,2,3)为复常数,P(f)为f(z)的1阶微差分多项式,并推广了已有的一些结论.
By using the value distribution theory,the existence,growth and exponent of convergence of zeros of entire solutions of a certain type of differential-difference equations of the form f(z)^n+P(f)=β1e^α1z+β2^α2z+β3e^α3z are considered,whereαi,βi(i=1,2,3)are constants.P(f)denotes an algebraic differential-difference polynomial in f(z)of degree one.And some known results obtained most recently are improved.
作者
吴丽镐
WU Lihao(School of Computer Engineering,Guangzhou College of South China University of Technology, Guangzhou Guangdong 510800,China)
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2018年第6期582-586,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11761035)
广东省普通高校青年创新人才(2015KQNCX230)资助项目
关键词
微差分方程
整函数
收敛指数
differential-difference equations
entire functions
exponent of convergence