期刊文献+

一类时间分数阶扩散方程中的源项反演解法 被引量:6

The Numerical Method for Reconstructing Source Term in a Time Fractional Diffusion Equation
下载PDF
导出
摘要 考虑了一类具有Neumann边界的时间分数阶扩散方程源项反演问题.首先,从分离变量法出发将反问题归结为第1类Volterra积分方程,从而揭示出反问题的不适定性;其次,为了获得反问题的条件稳定性,通过分数阶数值微分将第1类Volterra积分方程转化为第2类Volterra积分方程,建立源项反问题的条件稳定性和误差估计;最后,引进磨光正则化,获得稳定的分数阶数值导数,将其代入求解第2类积分方程,从而稳定地重建出仅依赖时间变量的源项.数值实验结果验证了所得反演算法的有效性. An inverse source problem in a time fractional diffusion equation with Neumann boundary is considered.Firstly,from the method of separation of variables for solving the direct problem,the inverse source problem is turned into a Volterra integral equation of the first kind,which reveals ill-posedness of the inverse problem.Secondly,for obtaining conditional stability of the inverse problem,the Volterra integral equation of the first kind is transformed into a second kind Volterra integral equation by using fractional derivative,then the conditional stability and error estimate are established.Lastly,from stable approximation of the fractional derivative computed by utilizing the mollification regularization,the time-dependent source term is reconstructed stably by solving the Volterra integral equation of the second kind.Results of numerical experiments verify the effectiveness of the inversion algorithm.
作者 邱淑芳 王泽文 曾祥龙 胡彬 QIU Shufang;WANG Zewen;ZENG Xianglong;HU Bin(School of Science,East China University of Technology,Nanchang Jiangxi 330013,China)
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2018年第6期610-615,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11761007 11561003) 江西省主要学科学术与技术带头人计划(20172BCB22019) 江西省高校科技落地计划(KJLD14051) 江西省教育厅科技课题(GJJ170473)资助项目
关键词 不适定问题 时间分数阶方程 源项反演 正则化方法 磨光方法 ill-posed problem time fractional equation source inversion regularization method mollification method
  • 相关文献

参考文献3

二级参考文献25

  • 1NIGMATULLIN R R. The realization of the generalized transfer equation in a medium with fractal geometry[ J l. Physica Status Solidi (b), 1986, 133(1 ) : 425 -430.
  • 2METZLER R, KLAFTER ,1. Boundary value problems for fractional diffusion equations [ J ]. Physiea A : Statistical Mechanics and its Applications, 2000, 278( 1 ) : 107 - 125.
  • 3DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sci- ences, 2003, 2003 (54) : 3413 - 3442.
  • 4JIANG Y, MA J. l-tigh-order finite element methods for time-fractional partial differential equations [ J ]. Journal of Computational and Applied Mathematics, 2011 , 235( 11 ) : 3285 -3290.
  • 5JIN B T, LAZAROV R, PASCIAK J, et al. Galerkin fern for fractional order parabolic equations with initial data in H-,0 < s < 1 [ J ]. Numeri- cal Analysis and its Applications, 2013, 8236:24-37.
  • 6LI X, XU C. A space-time spectral method for the time fractional diffusion equation [ J ]. SIAM Journal on Numerical Analysis, 2009, 47 (3) : 2108 -2131.
  • 7LIN Y, XU C. Finite difference/spectral approximations for the time-fractional diffusion equation [ J ]. Journal of Computational Physics, 2007, 225(2) : 1533 -1552.
  • 8WANG J G, ZHOU Y B, WEI T. Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation[ J]. Applied Numerical Mathematics, 2013, 68:39-57.
  • 9WEI T, ZHANG Z Q. Reconstruction of a time-dependent source term in a time-fractional diffusion equation[ J]. Engineering Analysis with Boundary Elements, 2013, 37( 1 ): 23 -31.
  • 10Z HANG Y, X U X. Inverse source problem for a fractional diffusion equation[ J ]. Inverse Problems, 2011,27 (3) : 035010. doi: 10. 1088/0266 - 5611/27/3/035010.

共引文献8

同被引文献22

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部