期刊文献+

深度残差网络JPEG隐写分析器的特性

Large-Scale JPEG Image Steganalysis Based on DRN
下载PDF
导出
摘要 传统的隐写分析技术采用富模型特征,通过集成分类器获得了较高的检测性能.深度学习框架在隐写分析领域展现出了比传统方法更强大的检测性能.已有研究表明,深度残差网络类似于集成分类器.为确认基于深度残差网络的隐写分析器徐氏网络是否具有上述特性,考虑到徐氏网络不足够深,文中采用瓶颈架构和组件复制两种方式分别对徐氏网络进行拓展,得到了4个变种——瓶颈网络、30层网络、40层网络和50层网络,并进行了3组实验——第1组实验通过训练徐氏网络及其4个变种网络,获得最优的模型,发现更深的网络并没有比徐氏网络的性能更好;第2组实验通过删除个别组件,证明了残差网络中的路径并不依赖于彼此;第3组实验通过置乱一些组件,发现残差网络在一定程度上可以重新配置.实验结果表明,徐氏网络也类似于集成分类器. The traditional steganalysis applies Rich Model features through Ensemble Classifier to achieve high detection performance.While the deep learning framework shows more powerful detection performance than traditional ones in steganalysis so far.It has been shown that the deep residual network is similar to the ensemble classifier.To confirm whether or not Xu's network,based on the steganalyzer of deep residual network which we find is not deep enough,is characteristic of the features mentioned above,we introduce deeper bottleneck architecture and reproduction of building blocks to expand them respectively,and we get four variants-bottleneck network,30-layer ResNet,40-layer ResNet and 50-layer ResNet.In this article,three experiments are introduced.The first is to train the Xu s network and the variants in order to obtain the optimal models.As a result,we found that the performance of deeper network is not better than that of Xu's network.The second is to remove a building block,proving that the path in the residual network does not depend on each other.The third is to re-order some building blocks,indicating that the residual network to a certain extent can be re-configured.Finally we conclude that Xu's network is also similar to ensembles of relatively shallow networks.
作者 谭舜泉 刘光庆 曾吉申 李斌 TAN Shunquan;LIU Guangqing;ZENG Jishen;LI Bin(College of Computer Science and Software Engineering,Shenzhen University,Shenzhen 518060,Guangdong,China;College of Information Engineering,Shenzhen University,Shenzhen 518060,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第5期39-46,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61772349 61572329)~~
关键词 图像隐写 残差网络 集成分类器 深度学习 image steganalysis residual network ensemble classifier deep learning
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部