期刊文献+

关联影响力传播最大化方法 被引量:6

Influence Maximization Methods of Correlated Information Propagation
下载PDF
导出
摘要 社会网络中影响力传播最大化是社会网络分析领域所关注的重要问题。针对多个影响力同时进行传播,且影响力间存在传播促进的情况,提出关联影响力传播最大化问题。首先,对经典线性阈值模型进行扩展,提出关联影响力线性阈值模型对关联影响力传播过程进行建模;其次,定义了关联影响力传播最大化问题,证明了该问题是NP-hard的,以及问题目标函数满足子模性;再次,针对该问题提出基于结点激活贡献估计的求解算法;然后,利用结点激活贡献估计存在相互独立性,进一步提出了并行化求解算法,并在Spark GraphX并行图计算框架上实现了该算法;最后,在真实的社会网络数据集上,通过实验测试验证了所提出方法的有效性。 Influence maximization is currently a focused problem in the research area of social networks.This paper considers the problem of correlated influence maximization(CIM)where multiple influence diffusion processes promote with each other.First,a correlated linear threshold model(CLT)is presented by extending the classic linear threshold model to model the diffusion processes of correlated influences.Then,the correlated influence maximization under CLT is proven to be NP-hard and the objective function to be submodular respectively.An algorithm which is based on the estimation of activation contributions of vertices(ACA)under CLT is proposed to solve CIM.Since the estimations of activation contribution for different nodes are independent with each other,a parallel ACA which is implemented based on Spark GraphX is furthermore presented to solve CIM.Finally,experiments are carried on real data sets of social networks to verify the feasibility and scalability of the proposed algorithms.
作者 张云飞 李劲 岳昆 罗之皓 刘惟一 ZHANG Yunfei;LI Jin;YUE Kun;LUO Zhihao;LIU Weiyi(School of Information Science and Engineering,Yunnan University,Kunming 650091,China;School of Software,Yunnan University,Kunming 650091,China;Key Laboratory of Software Engineering of Yunnan Province,Kunming 650091,China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第12期1891-1902,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61562091 61472345 云南省自然科学基金Nos.2014FA023 2016FB110 云南大学中青年骨干教师培养计划 云南大学青年英才培育计划No.XT412003 云南省软件工程重点实验室开放项目Nos.2012SE303 2012SE205~~
关键词 社会网络分析 影响力传播最大化 关联影响力传播最大化 线性阈值模型 SPARK GraphX social networks analysis influence maximization correlated influence maximization linear threshold model Spark GraphX
  • 相关文献

参考文献3

二级参考文献11

  • 1Kernpe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network [C] //Proe of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York, ACM, 2003:137-146.
  • 2Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks [C] //Proc of the 15th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2009:199-208.
  • 3Young H P, Blume L, Durlauf S. The diffusion of innovations in social networks [M]. The Economy as a Complex System Ⅲ. New York: Oxford University Press, 2003:1-19.
  • 4Watts D J. A simple model of global cascades con random networks[J]. National Academy of Sciences, 2002: 99(9): 5766-5571.
  • 5Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look al the underlying process of word-of mouth [J]. Marketing Letters, 2001, 12(3): 211-223.
  • 6Michael M, Francesco 15, Carlos C. Sparsification of Influencc Networks [C] //Proc of the 171h ACM SIGKDD In: Conf on Knowledge D{scovery and Data Mining. New York: ACM, 2011, 529- 537.
  • 7Manuel G, Jure i., Andreas K. Inferring networks of diffusion and influence[C]//Proc of the 16th ACM SIGKI)D lnt Conf on Knowledge Discovery and Data Mining. New: York: ACM, 2010:1019-1028.
  • 8田家堂,王轶彤,冯小军.一种新型的社会网络影响最大化算法[J].计算机学报,2011,34(10):1956-1965. 被引量:44
  • 9陈浩,王轶彤.基于阈值的社交网络影响力最大化算法[J].计算机研究与发展,2012,49(10):2181-2188. 被引量:22
  • 10樊兴华,赵静,方滨兴,李欲晓.影响力扩散概率模型及其用于意见领袖发现研究[J].计算机学报,2013,36(2):360-367. 被引量:48

共引文献143

同被引文献28

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部