期刊文献+

贝叶斯稀疏表示高光谱图像超分辨率方法 被引量:4

Bayesian Sparse Representation for Hyperspectral Image Super Resolution
下载PDF
导出
摘要 针对获取的高光谱图像空间分辨率较低的问题,对高光谱图像的分辨率增强方法进行分析研究,提出一种超分辨率方法。该方法使用非参数贝叶斯稀疏表示方法,将高分辨率图像与低空间分辨率的高光谱图像融合。首先,从高光谱图像中推测出材料反射光谱的概率分布以及一组伯努利分布;其次,通过贝叶斯字典学习得到光谱字典,并根据高分辨率图像的频谱量化进行字典变换;然后,利用变换后的字典计算高分辨率图像的稀疏编码矩阵;最后,将学习的字典与稀疏编码矩阵联合重建高分辨率的高光谱图像。实验结果表明,无论是主观视觉上的细节信息重建,还是客观指标的均方根误差以及峰值信噪比等,该方法均优于传统方法,与相似的稀疏表示方法、矩阵分解方法以及耦合光谱解混合方法相比,重建效果也有所提升,验证了有效性。 Aiming at the problem of low spatial resolution of hyperspectral images,this paper analyzes the resolution enhancement methods of hyperspectral images and proposes a super resolution method.The proposed method uses non-parametric Bayesian sparse representation to fuse high-resolution images with low-spatial-resolution hyperspectral images.Firstly,the probability distribution and a set of Bernoulli distribution of material reflectance spectrum in the image are obtained from the hyperspectral image.Secondly,the dictionary is obtained through Bayesian dictionary learning,and the dictionary is transformed according to the spectral quantification of highresolution image.Thirdly,the transformed dictionary is used to calculate the sparse coding matrix of the high resolution image.Finally,the dictionary and sparse coding matrix are combined to reconstruct the high-resolution hyperspectral image.The experimental results show that the proposed method is superior to the traditional methods in both subjective visual reconstruction of detail information,root mean square error and peak signal to noise ratio.Compared with the similar sparse representation method,the matrix factorization method and the coupled spectral unmixing method,the proposed method has the enhancement of reconstruction effect and its effectiveness is validated.
作者 黄伟 许蒙恩 徐国明 黄勤超 HUANG Wei;XU Meng’en;XU Guoming;HUANG Qinchao(The 27th Research Institute,China Electronics Technology Group Corporation,Zhengzhou 450047,China;Army Artillery and Air Defense Forces Academy of PLA,Hefei 230031,China;Information Engineering College,Anhui Xinhua University,Hefei 230088,China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第12期1987-1995,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61379105 中国博士后科学基金No.2016M592961 安徽省自然科学基金No.1608085MF140~~
关键词 超分辨率 高光谱图像 贝叶斯稀疏表示 字典学习 稀疏编码 super resolution hyperspectral image Bayesian sparse representation dictionary learning sparse coding
  • 相关文献

参考文献3

二级参考文献14

  • 1Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Processing Magazine, 2002, 19(1): 12-16.
  • 2Landgrebe D. Hyperspectral image data analysis. IEEF, Sig- nal Processing Magazine, 2002, 19(1): 17-28.
  • 3Akgun T, Altunbasak Y, Mersereau R M. Super-resolution reconstruction of hyperspectral images. IEEE Transactions on Image Processing, 2005, 14(11): 1860-1875.
  • 4Eismann M T, Hardie R C. Application of the stochas- tic mixing model to hyperspectral resolution enhancement. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1924-1933.
  • 5Guo Z H, Wittmana T, Osher S. L1 unmixing and its ap- plication to hyperspectral image enhancement. In: Proceed- ings of Algorithms and Technologies for Multispectral, Hy- perspectral, and Ultraspectral Imagery XV. Orlando, FL, USA: SPIE, 2009. 1-9.
  • 6Zhao Y Q, Yang J X, Zhang Q Y, Song L, Cheng Y M, Pan Q. Hyperspectral imagery super-resolution by sparse repre- sentation and spectral regularization. EURASIP Journal on Advances in Signal Processing, 2011, 2011(1): 87.
  • 7Engan K, Aase S O, Husoy J H. Method of optimal direc- tions for frame design. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ, USA: IEEE, 1999. 2443-2446.
  • 8Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representa- tion. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 9Elad M, Aharon M. Image denoising via sparse and redun- dant representations over learned dictionaries. IEEE Trans- actions on Image Processing, 2006, 15(12): 3736-3745.
  • 10Daubechies I, Defrise M, De Mol C. An iterative thresh- olding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mthe- matics, 2004, 57(11): 1413-1457.

共引文献22

同被引文献25

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部