期刊文献+

光调制解调技术在田间杂草光谱识别中的应用 被引量:3

Application of optical modulation and demodulation technology in weed spectral identification
下载PDF
导出
摘要 为了实现快速、无损地从作物中识别杂草,研究了基于光谱分析技术的光谱传感器.以苗期冬油菜为研究对象,根据已提取的4个特征波长(590,710,750,940 nm),设计了一套光谱传感器原型试验系统.该试验系统在传统光谱传感器的基础上,运用光调制解调技术剔除检测结果中环境杂散光的干扰,包括试验设备(光信号调制设备和光电信号采集设备)和试验数据处理LabVIEW程序.用冬油菜菜叶对试验系统4个不同波段进行了验证试验,当外界环境杂散光对应直流分量变化幅度分别为10. 00%,6. 40%,1. 17%,1. 34%,22. 60%,38. 90%,56. 00%,59. 50%时,反射率表征值一直保持稳定,表明在外界环境杂散光缓慢变化和剧烈变化时,系统可以稳定测量被测样品的反射率.该系统验证了光调制解调技术能有效提高被测样品光谱信号的测量信噪比. In order to identify weeds from crops rapidly and nondestructively,a spectral sensor based on spectral analysis technology was developed.Winter rape in seedling stage was served as study crop,and a prototype experimental system with the spectral sensor was designed according to four characteristic wavelengths(590,710,750 and 940 nm),which already had been extracted.On basis of the traditional spectral sensor,the system could eliminate the interference of the environmental stray light in detected results by using optical modulation and demodulation technology.This system included experimental equipment(optical signal modulation equipment and photoelectric signal acquisition equipment)and experimental data processing LabVIEW program.Validation experiments were performed on four different bands using winter rape leaves.When the DC component variation amplitudes,which were caused from the change in the intensity of external environmental stray light,were 10.00%,6.40%,1.17%,1.34%,22.60%,38.90%,56.00%and 59.50%,respectively,the reflectance always was stable.The experimental results show that the system can stably measure the reflectance of measured samples when the ambient light intensity varies either slowly or rapidly.The system confirms that the optical modulation and demodulation technology can effectively improve the signal-to-noise ratio of the measured samples.
作者 魏新华 包盛 陶涛 李林 WEI Xinhua;BAO Sheng;TAO Tao;LI Lin(Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
出处 《排灌机械工程学报》 EI CSCD 北大核心 2018年第12期1323-1329,共7页 Journal of Drainage and Irrigation Machinery Engineering
基金 江苏省高校自然科学研究重大项目(14KJA210001)
关键词 光调制解调 杂草识别 光谱分析 光谱反射率 试验数据处理 optical modulation and demodulation weed identification spectral analysis spectral reflectance test date processing
  • 相关文献

参考文献3

二级参考文献42

  • 1丁松峰,沈骁,杨仲犁.声光调制在雷达对抗中的应用[J].科技风,2008(6):50-50. 被引量:1
  • 2王国荣.微弱电流的测量与I/F变换电路的设计[J].核电子学与探测技术,2005,25(4):358-362. 被引量:16
  • 3何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-853. 被引量:148
  • 4Geol P K, Prasher S O, Patel R M, et al. Use of airborne multi-spectral imagery for weed detection in field crops[J]. Transactions of the ASAE, 2002, 45(2): 443- 449.
  • 5Sogaard H T. Weed classification by active shape models[J]. Biosystems Engineering, 2005, 91(3): 271- 281.
  • 6Slaughter D C, Giles D K, Downey D. Autonomous robotic weed control systems: A review[J]. Computers and Electronics in Agriculture, 2008, 61:63-78.
  • 7Yun Zhang, Erik S Staab, David C Slaughter, et al. Automated weed control in organic row crops using hyperspectral species identification and thermal micro- dosing[J]. Crop Protection, 2012, 41: 96- 105.
  • 8Longchamps. L, Panneton B, Samson G, et al. Discrimination of corn, grasses and dicot weeds by their UV-induced fluorescencespectral signature[J]. Precision Agriculture, 2009, 11(2): 181 - 197.
  • 9Victor Alchanatis, Leonid Ridel, Amots Hetzroni, et al. Weed detection in multi-spectral images of cotton fields[J]. Computers and Electronics in Agriculture, 2005, 47(3): 243-260.
  • 10Nieuwenhuizen A T, Hofstee J W, van de Zandeb J C, et al. Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths[J]. Computers and Electronics in Agriculture 2010, 73(2): 146-153.

共引文献34

同被引文献27

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部