期刊文献+

基于混合结构卷积神经网络的目标快速检测算法 被引量:8

Target Fast Detection Algorithm Based on Hybrid Structure Convolutional Neural Network
下载PDF
导出
摘要 为提高基于卷积神经网络(CNN)目标检测算法的检测速度,提出一种基于混合结构CNN的目标快速检测算法。采用基于CNN的Faster R-CNN目标检测框架,对其CNN进行优化。基于多层感知器结构,提出CR-mlpconv卷积层结构。在网络浅层采用C. Re LU策略,同时结合CR-mlpconv层结构和C. Re LU策略,合理设计层参数,构成卷积神经网络。将该卷积神经网络融合到Faster R-CNN检测框架中,实现目标快速检测。实验结果表明,在检测精度的适当影响范围内,该算法能够减少网络模型参数并降低网络模型的内存消耗,提高网络的实时性。 In order to improve the detection speed of the Convolutional Neural Network(CNN)target detection algorithm,a target fast detection algorithm based on hybrid structure CNN is proposed.CNN is optimized by CNN-based Faster R-CNN target detection framework.Based on the multilayer perceptron structure,a CR-mlpconv convolutional layer structure is proposed.The C.ReLU strategy is adopted in the shallow layer of the network,and the CR-mlpconv layer structure and the C.ReLU strategy are combined to design the layer parameters reasonably to form CNN.CNN is merged into the Faster R-CNN detection framework to achieve rapid target detection.Experimental results show that compared with the Faster R-CNN+ZFnet algorithm,the algorithm can reduce the network model parameters,reduce the memory consumption of the network model,and improve the real-time performance of the network.
作者 林封笑 陈华杰 姚勤炜 张杰豪 LIN Fengxiao;CHEN Huajie;YAO Qinwei;ZHANG Jiehao(Automated Institute,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第12期222-227,共6页 Computer Engineering
关键词 目标快速检测 FasterR-CNN框架 卷积神经网络 特征提取 混合结构 低通道 target fast detection Faster R-CNN framework Convolutional Neural Network(CNN) feature extraction hybrid structure low channel
  • 相关文献

参考文献4

二级参考文献26

共引文献96

同被引文献63

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部