摘要
提出了一个求解非线性半定规划的无罚函数无滤子序列二次半定规划(SSDP)算法.算法每次迭代只需求解一个二次半定规划子问题确定搜索方向;非单调线搜索保证目标函数或约束违反度函数的充分下降,从而产生新的迭代点.在适当的假设条件下,证明了算法的全局收敛性.最后给出了初步的数值实验结果.
In this paper,we present a sequence quadratic semidefinite programming(SSDP)algorithm method without a penalty function or a filter for nonlinear semidefinite programming.At each iteration,the search direction is determined by solving a specially quadratic semidefinite programming subproblem.The nonmonotone line search ensures that the objective function or constraint violation function is sufficiently reduced.The proposed algorithm is globally convergent under some mild conditions.The preliminary numerical results are reported at the end of the paper.
作者
黎健玲
张辉
杨振平
简金宝
LI Jianling;ZHANG Hui;YANG Zhenping;JIAN Jinbao(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China;School of Management,Shanghai University,Shanghai 200444,China;College of Science,Guangxi University for Nationalities,Nanning 530006,China)
出处
《运筹学学报》
CSCD
北大核心
2018年第4期1-16,共16页
Operations Research Transactions
基金
国家自然科学基金(No.11561005)
广西自然科学基金(Nos.2016GXNSFAA380248
2014GXNSFFA118001)
关键词
非线性半定规划
SSDP算法
非单调线搜索
全局收敛性
nonlinear semidefinite programming
SSDP algorithm
nonmonotone line search
global convergence