期刊文献+

图上合作博弈和图的边密度 被引量:7

Graph games and edge density of graphs
下载PDF
导出
摘要 1977年,Myerson建立了以图作为合作结构的可转移效用博弈模型(也称图博弈),并提出了一个分配规则,也即"Myerson值",它推广了著名的Shapley值.该模型假定每个连通集合(通过边直接或间接内部相连的参与者集合)才能形成可行的合作联盟而取得相应的收益,而不考虑连通集合的具体结构.引入图的局部边密度来度量每个连通集合中各成员之间联系的紧密程度,即以该连通集合的导出子图的边密度来作为他们的收益系数,并由此定义了具有边密度的Myerson值,证明了具有边密度的Myerson值可以由"边密度分支有效性"和"公平性"来唯一确定. A cooperative game with transferable utility,shortly TU game,is a pair consisting of a finite set of players and a characteristic function assigning a worth to each coalition of players.Myerson(1977)introduced TU games with restricted cooperative structure represented by an undirected graph,or simply graph games,and presented an allocation rule,called the Myerson value,which extended the well-known Shapley value.Under the assumption that only coalitions of connected players can cooperate and realize gains from cooperation.However,the structures of connected coalitions in the model are ignored.To measure the degree of closeness among the members of each connected set,we introduce the(local)edge density that is regarded as the income coefficient of the members of the connected set and define the Myerson value with edge density.We show the Myerson value with edge density can be uniquely determined by component efficiency with the edge density and fairness.
作者 李理 单而芳 LI Li;SHAN Erfang(School of Management,Shanghai University,Shanghai 200444,China)
出处 《运筹学学报》 CSCD 北大核心 2018年第4期99-107,共9页 Operations Research Transactions
基金 国家自然科学基金(No.11571222)
关键词 图博弈 边密度 Myerson值 分支有效性 公平性 graph graph game edge density Myerson value component efficiency fairness
  • 相关文献

参考文献4

二级参考文献22

  • 1van den Brink R, van der Laan G, Vasil'ev V. Component efficient solutions in line-graph games with applications [J]. Economic Theory, 2007, 33: 349-364.
  • 2Khmelnitskaya A B. Values for rooted-tree and sink-tree digraph games and sharing a river [J]. Theory and Decision, 2010, 69: 657-669.
  • 3Li L, Li X. The covering values for acyclic digraph games [J]. International Journal of Game Theory, 2011, 40: 697-718.
  • 4Tijs S H. Bounds for the core and the τ-value. Moeschlin O. and Pallaschke D.(eds.), Game Theory and Mathematical Economics, North-Holland, 1981.
  • 5Driessen T. Cooperation games, solutions and application [M]. Netherlands: Kluwer Academic Publishers, 1988.
  • 6Bilbao J M, Tijs S H. The τ--value for games on matroids [J].Sociedad de Estadistica e Inrestigacion Operativa, 2002, 10: 67-81.
  • 7Myerson R B. Graphs and cooperation in games [J]. Mathematics of Operations Research, 1977, 2: 225-229.
  • 8侯东爽.拟阵限制下合作对策的解及其性质[D】.西安:西北工业大学,2009.
  • 9Bondy J A, Murty U S R. Graph theory with application [M]. Britain: Macmillan Press, 1976.
  • 10Shapley L S. A value for n-persons games [J]. Annals of Mathematics Studies, 1953, 28: 307-318.

共引文献17

同被引文献33

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部