摘要
MacLane于1937年给出了圈基方面的重要定理:图G是平面图,当且仅当图G有2-重基.连通图G_1和G_2的联图G_1∨G_2指的是在它们的不交并G_1∪G_2上添加边集{(u,v)|u∈V(G_1),v∈V(G_2)}对G_1和G_2的联图G_1∨G_2的圈基重数进行了研究,得到了一个上界,改进了Zare的结果.并在此基础之上,进一步得到特殊联图C_m∨C_n的圈基重数的一个上界.
In 1937 MacLane gave the important theory on cycle basis: Graph G is planar if and only if G has a 2-basis. The join G=G1 ∨ G2 of graphs G1 and G2 is obtained from G1∪G2 by adding all the edges in {(u,v)|u∈V(G1), v ∈ V(G2)}. In this paper we investigate the basis number of G=G1∨G2 and obtain an upper bound which improves the bound given by Zare. Based on this,a better bound of Cm ∨ Cn is derived too.
作者
吕雪征
魏二玲
宋宏业
Lü Xuezheng;WEI Erling;SONG Hongye(School of Mathematics,Renmin University of China,Beijing 100872,China;School ofGeneral Education,Beijing International Studies University,Beijing 100024,China)
出处
《运筹学学报》
CSCD
北大核心
2018年第4期148-152,共5页
Operations Research Transactions
基金
国家自然科学基金(No.11401576)
关键词
联图
圈空间
基
join of graph
cycle space
basis