期刊文献+

基于优化K-means的Android系统恶意软件检测的研究与设计 被引量:1

Research and Design of Malware Detection based on Optimized K-Means for Android System
下载PDF
导出
摘要 由于开放性等特点,Android已成为目前应用最广泛的移动终端平台。然而,针对它的恶意软件层出不穷。为了检测这些安全隐患,人们提出了很多检测系统。但是,这些系统都存在一些缺陷,不但需要消耗较多资源,而且准确率不高。通过分析现有系统的不足,首先给出恶意软件检测系统的总体设计方案,其次在提取Android应用程序的特征参数后,重点设计和优化了特征聚类算法(k-means算法)。经仿真验证,设计的系统可以快速、有效地识别出恶意软件,具有重要的理论和应用价值。 Because of its openness and other characteristics,the Android system has become the most widely used mobile terminal platform.However,malware targeting it is also coming out one after the other.In order to detect these safety hazards,many detection systems have been proposed.But these systems have some drawbacks,which not only consume more resources,but also have low accuracy.By analyzing the deficiencies of the existing systems,the overall design of the malware detection system is given.Then,after extracting the feature parameters of the Android application,the feature clustering algorithm(k-means algorithm)is designed and optimized.The simulation proves that the designed system can identify malware quickly and effectively,which has important theoretical and application value.
作者 赵中军 曾涌泉 王运兵 ZHAO Zhong-jun;ZENG Yong-quan;WANG Yun-bing(No.30 Institute of CETC,Chengdu Sichuan 610041,China)
出处 《通信技术》 2018年第12期2992-2998,共7页 Communications Technology
关键词 ANDROID 恶意软件检测 K-均值(K-means) 聚类 Android malware detection k-means clustering
  • 相关文献

参考文献2

二级参考文献15

  • 1吴俊昌,骆培杰,程绍银,等.基于权限分类的Android应用程序的静态分析[c]//第四届信息安全漏洞分析与风险评估大会.北京,2011:61-71.
  • 2Christodorescu M, Jha S. Static analysis of executables to de- tect malicious patterns [ C ]//Proceedings of the 12th confer- ence on USENIX security. Berkeley, CA, USA : [ s. n. ] ,2003.
  • 3Rieck K, Holz T, Willems C, et al. Learning and classification of malware behavior[ C ]//Proc of detection of intrusions and malware, and vulnerability assessment. [ s. I. ] : [ s. n. ], 2008 : 108-125.
  • 4Chfistodorescu M, Jha S, Kruegel C. Mining specifieations of malicious behavior[ C ]//Proceedings of the 1st India software engineering conferenee. [ s. 1. ]: [ s. n. ] ,2008:5-14.
  • 5Egele M, Seholte T, Kirda E, et al. A survey on automated dy- namic malware analysis techniques and tools [ J]. ACM Com- puting Surveys,2012,44(2) :6-47.
  • 6Burguera I, Zurutuza U, Nadjm-Tehrani S. Crowdroid : behav- ior-based malware detection system for Android [ C ]//Pro- ceedings of the 1st ACM workshop on security and privaey in smartphones and mobile devices. Chicago : ACM, 2011 : 15 - 26.
  • 7Sehmidt A D, Bye R, Sehmidt H G, et al. Statie analysis of ex- eeutables for collaborative malware deteetion on Android [C]//Proc of IEEE international conference on communica- tions. Dresden : IEEE ,2009 : 1-5.
  • 8Zhou Yajin, Jiang Xuxian. Dissecting Android malware:char- acterization and evolution [ C ]//Proc of IEEE symposium on security and privacy. San Francisco, CA : IEEE, 2012 : 95 - 109.
  • 9吕海军,陈前斌,吴小平.智能手机病毒的发展及其对策研究[J].信息安全与通信保密,2008,30(1):80-82. 被引量:9
  • 10童振飞,杨庚.Android平台恶意软件的静态行为检测[J].江苏通信,2011,27(1):39-42. 被引量:11

共引文献96

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部