期刊文献+

基于多分辨率和自适应分数阶的Active Demons算法 被引量:4

Active Demons Algorithm Based on Multi-Resolution and Adaptive Fractional Differential
下载PDF
导出
摘要 分数阶Active Demons(fractional active demons,FAD)算法是图像非刚性配准的有效方法,并且能解决灰度均匀和弱纹理图像配准精度低,优化易陷入局部极小而导致的配准速度缓慢问题,但是该算法中分数阶最佳阶次的寻找需要通过多次实验人工选取,缺乏阶次自适应性.针对该问题,提出了基于多分辨率和自适应分数阶的Active Demons算法,该算法首先根据图像梯度模值和信息熵,构建了自适应分数阶阶次的数学模型,基于该模型自动计算出分数阶的最佳阶次和微分动态模板;然后将多分辨率策略加入到自适应分数阶Active Demons算法中,进一步提高了图像配准效率.理论分析和实验结果均表明:提出的算法可用于灰度均匀、弱边缘和弱纹理图像的配准,能根据图像的局部特征自适应计算最佳分数阶阶次,并避免了算法陷入局部最优,从而提高了图像配准的精度和效率. Active Demons algorithm based on fractional differential has been proved to be effective for non-rigid image registration,and can solve the problem of low accuracy and low efficiency in image registration for intensity uniformity or weak texture region.However,the optimal order of fractional differential operator in the algorithm needs to be selected manually by multiple experiments,lack of order adaptive in image registration.Aiming at the problem,this paper proposes a new Active Demons algorithm based on multi-resolution and adaptive fractional differential.Firstly,an adaptive fractional order mathematical model is constructed based on the gradient magnitude and information entropy of image,therefore the optimal order and differential dynamic template are adjusted adaptively.Additionally,multi-resolution strategy is introduced to adaptive fractional differential Active Demons algorithm,therefore the registration efficiency is improved.Theory analysis and experimental results show that the proposed algorithm is capable of registrating images with intensity uniformity,weak edge and weak texture.And the optimal order of fractional differential operator can be calculated adaptively.Furthermore,the presented method can avoid falling into local optimum,thus the accuracy and efficiency of registration can be improved.
作者 张桂梅 郭黎娟 熊邦书 储珺 Zhang Guimei;Guo Lijuan;Xiong Bangshu;Chu Jun(Computer Vision Institute, Nanchang Hangkong University, Nanchang 330063;School of Information Engineering, Nanchang Hangkong University, Nanchang 330063)
出处 《计算机研究与发展》 EI CSCD 北大核心 2018年第12期2753-2763,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61462065 61462063) 江西省科技支撑计划基金项目(20161BBF60091)~~
关键词 R-L(Riemann-Liouville)分数阶微分 ACTIVE DEMONS (AD)算法 自适应模型 多分辨率 图像配准 R-L(Riemann-Liouville) fractional differential Active Demons (AD) algorithm adaptive model multi-resolition image registration
  • 相关文献

参考文献5

二级参考文献47

  • 1彭晓明,陈武凡,马茜.基于B样条的弹性点配准方法[J].中国图象图形学报,2007,12(6):1079-1085. 被引量:6
  • 2蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 3Brown L G. A survey of image registration techniques. ACM Computing Surveys (CSUR), 1992, 24(4): 325-376.
  • 4Thirion J P. Image matching as a diffusion process: an anal- ogy with MaxwelVs demons. Medical Image Analysis, 1998, 2(3): 243-260.
  • 5Vercauteren T, Pennec X, Perchant A, Ayache N. Sym- metric log-domain diffeomorphic registration: a demons- based approach, h4edical Image Computing and Computer- Assisted Intervention - MICCAI 2008. Berlin Heidelberg: Springer 2008. 754-761.
  • 6Tang T W H, Chung A C S. Non-rigid image registration using graph-cuts. Medical Image Computing and Computer- Assisted Intervention - MICCAI 2007. Berlin Heidelberg: Springer 2007. 916-924.
  • 7Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral demons-image registration via global spectral cor- respondence. Computer Vision-ECCV 2012. Berlin Heidel- berg: Springer 2012. 30-44.
  • 8Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral log-demons: diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 2014, 107(3): 254-271.
  • 9Fowlkes C, Belongie S, Clmng F, Malik J. Spectral grouping using the Nystr6m method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
  • 10Talwalkar A, Rostamizadeh A. Matrix coherence and the Nystr6m methods. In: Proceedings of the 26th Conference in Uncertainty in Artificial Intelligence. arXiv preprint arXiv: 1004.2008, 2010.

共引文献23

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部