摘要
为了实现对数控机床绿色度的智能评价,提高数控机床绿色度预测精度,提出了一种基于聚类和自适应神经模糊推理系统(ANFIS)的评价方法。采用改进的粒子群优化模糊C均值聚类算法实现样本的自适应分类,生成辅助ANFIS学习的训练样本集;建立基于ANFIS的评价模型,通过对训练样本集的学习自动生成模糊规则,消除评价指标的模糊性和随机性对评价结果的影响;训练后的评价模型可用于评价样本的自适应推理。最后利用提出的评价方法对数控机床绿色度进行实例分析,验证了该评价方法的有效性。
To realize the intelligent evaluation and improve the prediction accuracy of CNC machine s green degree,an evaluation method of CNC machine s green degree was proposed based on clustering and ANFIS.Clustering algorithm based on FCM and improved particle swarm optimization were used to accomplish adaptive classification of samples and generate a training sample set for ANFIS learning.The fuzzy rules were automatically generated based on training results in order to eliminate effects of the fuzziness and randomness of the indicators.After training,the model might make inference about evaluation samples.Finally,with the experiments of the CNC machine s green degree evaluation,the effectiveness of the proposed method was demonstrated.
作者
王宇钢
修世超
WANG Yugang;XIU Shichao(School of Mechanical Engineering and Automation,Liaoning University of Technology,Jinzhou,Liaoning,121001;School of Mechanical Engineering and Automation,Northeastern University,Shenyang,110819)
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2018年第23期2845-2849,2858,共6页
China Mechanical Engineering
基金
国家自然科学基金资助项目(51375083)
辽宁省自然科学基金资助项目(20170540445)
关键词
数控机床
绿色度
粒子群
模糊C均值
自适应神经模糊推理系统
CNC machine
green degree
particle swarm
fuzzy C-means(FCM)
adaptive neural-fuzzy inference system(ANFIS)