期刊文献+

基于正则项优化的高光谱图像噪声消除方法 被引量:1

Research on Image Noise Elimination Based on Regularization Term Optimization
下载PDF
导出
摘要 为了有效消除多光谱和高光谱遥感图像中的重要噪声源(泊松分布噪声),提出了一种基于正则项优化的高光谱图像去噪方法。该方法根据光谱图像立方体矢量模型以及泊松分布噪声分析,利用一个全变分正则项对单色辐射图像的方法进行扩展,从而保留边缘信息并在光谱和空间上具有自适应性。此外,为了降低该方法的计算复杂度,采用基于分裂Bregman的方法进行了优化。实验结果显示,相比于最近的几种类似方法,该方法在合成和真实数据中均表现出较好的泊松分布噪声去除性能。 In order to eliminate the important noise sources(Poisson distribution noise)in multispectral andhyperspectral remote sensing images effectively,a hyperspectral image denoising method based on regulariza-tion optimization was proposed.Based on the spectral image cube vector model and Poisson distribution noiseanalysis,a full variational regularization term was used to extend the method of monochromatic radiation im-age,so as to preserve the edge information and be adaptive in the spectrum and space.In addition,in order toreduce the computational complexity of the proposed method,an optimization method based on split Bregmanwas adopted.The experimental results showed that compared with the most recent similar methods,the pro-posed method showed better removal performance of Poisson distribution noise in both synthetic and real data.
作者 高薇 张福泉 曾健民 GAO Wei;ZHANG Fuquan;ZENG Jianmin(School of Information Management,Minnan Institute of Technology,Shishi Fujian 362700,China;School of Computer Science&Technology,Beijing Institute of Technology,Beijing 100081,China)
出处 《莆田学院学报》 2018年第5期52-59,共8页 Journal of putian University
基金 福建省教育厅高等学校创新创业教育改革项目立项(闽教高[2015]41号) 福建省教育厅应用型转变试点项目(闽教高[2016]16号) 福建省科技厅引导性项目(2018H0028)
关键词 高光谱图像 噪声去除 正则项 变分 Bregman优化 信噪比 结构相似指数 hyperspectral imag noise removal regularization term variatio Bregman optimization PSNR SSIM
  • 相关文献

参考文献6

二级参考文献31

  • 1黄文辉,陈仁雷,张家谋.数字视频图像质量客观测量方法的改进与实现[J].北京邮电大学学报,2005,28(4):87-90. 被引量:26
  • 2张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 3[1]Halem N. Contextual, "Image Understanding of Airport Piotographs", SPIE, 1981 , 1521- 1532.
  • 4[2]Huertas A. , "Detect Runways in Complex Airport Scenes", Computer Vision, Graphics and Image Processing ,1990,24(2) :43-57.
  • 5赵荣椿.数字图像处理导论[M].西安:西安工业大学出版社,2000..
  • 6Lenoid I. Rudin, Stanley Osher, Emad Fatemi. Nonlinear total variation based noise removal algorithms [ J]. 1992, Physica D, 60 : 259 - 268.
  • 7Wotao Yin, Stanley Osher, Donald Goldfarb, Jerome Dar- bon. Bregman Iterative Algorithms for L1-Minimization with Applications to Compressed Sensing [ J ]. SIAM Journal of Imaging Sciences, 2008,1( 1 ) : 143 - 168.
  • 8Elaine T. Hale, Wotao Yin, Yin Zhang. A Fixed-Point Continuation Method for ll-Regularized Minimization with Applications to Compressed Sensing [ R ]. CAAM Technical Report,2007, TR07 - 07.
  • 9Elaine T. Hale, Wotao Yin, Yin Zhang. Fixed-Point Continu- ation Applied to Compressed Sensing: Implementation and Numerical Experiments [ J ]. Journal of Computational Mathematics,2010,28(2) : 170 - 194.
  • 10Tom GoldStein, Stanley Osher. The Split Bregman Method for L1 Regularized Problems [ J ]. SIAM Journal of Imaging Sciences,2009,2(2) : 323-343.

共引文献13

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部