期刊文献+

高维分类数据的关联关系及可压缩性分析 被引量:1

Analysis of correlation and compressibility of high-dimensional categorical data
下载PDF
导出
摘要 对于高维情形而言,研究变量之间的关联关系及可压缩性是重要和繁琐的.首先,给出了基于对数线性模型和关联图的压缩性定理;然后,讨论了基于条件互信息可压缩性排序的问题,并通过三个不同的实例进行验证分析.研究结果为直观简便地分析高维分类数据的关系及结构提供了方法. For high-dimensional categorical data,the study of the correlation and the compressibility among variables is significant and complicated.In the present study,the theorem of compressibility based on the log-linear model and the corre-lation diagram is provided,and the issue of the sequencing compressibility based on the conditional mutual information is discussed.In addition,the verification analysis is carried out through three different examples,and we find that the com-pressible variables are in a relatively compressible position in the compressible sort.The research findings providing methods to intuitively and succinctly analyze the relation and the structure of high-dimensional categorical data.
作者 徐玲丽 陈雪东 XU Lingli;CHEN Xuedong(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004,Zhejiang Province,China;College of Science,Huzhou University,Huzhou 313000,Zhejiang Province,China)
出处 《应用数学与计算数学学报》 2018年第4期731-740,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(1171105)
关键词 对数线性模型 关联图 可压缩性定理 互信息 可压缩性排序 log-linear model correlation diagram theorem of compressibility mutual information sequencing of compressibility
  • 相关文献

参考文献5

二级参考文献4

共引文献19

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部