期刊文献+

Fisher型方程的Jacobi谱配点法(英文) 被引量:1

Solving Fisher-type equations by Jacobi spectral collocation method
下载PDF
导出
摘要 主要讨论了以Jacobi-Gauss-Lobatto点为配置点的谱配点法数值求解具有初边值条件的Fisher型方程.借助于插值和由此产生的微分矩阵,将Fisher型方程转化为常微分方程组,再利用四阶Runge-Kutta法求解该常微分方程组.文中以一维Fisher型方程为例证明了该方法具有谱精度,并给出了四个Fisher型方程算例.数值例子验证了Jacobi谱配点法具有高精度和快速收敛性. The aim of this paper is to obtain the numerical solutions to the Fisher-type equations with initial-boundary conditions by the Jacobi spectral collocation method using the Jacobi-Gauss-Lobatto collocation(JGLC)points.By means of the interpolation and the resulting differentiation matrix,we transfer the nonlinear partial differential equations into a system of ordinary differential equations(ODEs)that can be solved by the fourth-order Runge-Kutta method.We prove the spectral accuracy of this method for one-dimensional Fisher-type equations.Four examples of the Fisher-type equations are considered,and numerical experiments demonstrate the high accuracy and the fast convergence of the Jacobi spectral collocation method.
作者 徐信 曾晓艳 XU Xin;ZENG Xiaoyan(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第4期741-761,共21页 Communication on Applied Mathematics and Computation
基金 supported by the National Natural Science Foundations of China(11374203,11701358)
关键词 FISHER型方程 Jacobi谱配点法 Jacobi-Gauss-Lobatto(JGLC)点 Fisher-type equations Jacobi spectral collocation method Jacobi-Gauss-Lobatto collocation(JGLC)points
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部