期刊文献+

幂变换门限GARCH模型变点问题的贝叶斯分析

Bayesian analysis of power-transformed and threshold GARCH model with change-point
下载PDF
导出
摘要 用贝叶斯方法对幂变换门限GARCH (PTTGARCH)模型变点问题进行统计分析.构造了变点模型参数的满条件分布并且采用MCMC的Griddy-Gibbs抽样算法对参数进行了估计.分别就不同的变点位置、模型不存在变点以及模型接近非平稳的情况进行数值模拟.结果表明:变点处于序列中间位置时,估计效果较好,当变点位置越靠近序列两端时,所得估计的误差越大;当模型不存在变点时,所设变点位置τ后验分布的峰度接近均匀分布的峰度;当模型存在变点时,τ后验分布的峰度大于2,且模型越平稳,τ的后验分布的峰度越大,因此可以通过判断τ的后验分布的峰度来判断模型是否存在变点.最后以GARCH模型对上证指数日收益率进行分析,得到变点发生时刻的概率分布,该结果与市场的变化背景符合. The purpose of this paper is to analyze the change-point problem for the power-transformed and threshold GARCH(PTTGARCH)model with the Bayesian method.Meanwhile,we construct the full conditional distribution of parameters in the model and estimate the parameters with the Griddy-Gibbs sampling algorithm.The numerical simulation is carried out under three different conditions:the change-point in different positions,the model without change-point,and the nearly non-stationary model.The result shows that,firstly,when the change-point is in the middle position of the sequence,the estimation performs well.In other words,the change-point is closer to both ends of the sequence,the error of the estimation is larger.Secondly,when there is no change-point in the model,the kurtosis of the posterior distribution of the change-pointτis close to that of uniform distribution.Thirdly,when the model which is stationary has a change-point,the kurtosis ofτ's posterior distribution is greater than 2;the smoother the model is,the greater the kurtosis ofτ's posterior distribution is.Therefore,it is possible to examine the existence of the change-point in a stationary model through the kurtosis of theτ's posterior distribution.Finally,this paper applies the GARCH model to analyze the Shanghai Composite,and obtains the probability distribution of the change-point.This result is consistent with the changes in the stock market.
作者 刘欢 何幼桦 LIU Huan;HE Youhua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第4期841-851,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11371242 11471208)
关键词 贝叶斯估计 幂变换门限GARCH模型 变点 Griddy-Gibbs抽样 MCMC Bayesian estimation power-transformed and threshold GARCH(PTTGARCH)model change-point Griddy-Gibbs sampler Markov chain Monte Carlo(MCMC)
  • 相关文献

参考文献4

二级参考文献40

  • 1Quandt, R. E.. Tests of the Hypothesis that a Linear Regression Obeys Two Separate Regimes [J]. Journal of the American Statistical Association, 1960.55: 324-330.
  • 2Andrews, D. W. K., Ploberger, W.. Optimal Tests when a Nuisance Parameter is Present Only Under the Alternative [J]. Econometrica, 1994,. 62 : 1383-1414.
  • 3Brown, B. , Durbin, J. , Evans, J.. Techniques for Testing the Constancy of Regression Relationships Over Time [J]. Journal of the Royal Statistical Society, 1975, 37: 149-172.
  • 4Andrews, D. W. K. , Lee, I. , Ploberger, W.. Optimal Change Point Tests for Normal Linear Regression [J]. Journal of Econometrics, 1996,70: 9-38.
  • 5Bai, J.. Estimation of a Change Point in Multiple Regression Models [J]. Review of Economics and statistics, 1997,79:551-563.
  • 6Broemeling, L. D.. Bayesian Inferences about a Changing Sequence of Random Variables [J]. Communica tions in Statistics-Theory and Methods, 1974,3 : 243- 255.
  • 7Lee, A. F. S. , Heghinian, S. M.. A Shift of the Mean Level in a Sequence of Independent Normal Random Variables: a Bayesian Approach [J]. Technomettics,1977,19: 503-506.
  • 8Carlin, B. P., Gelfand, A. E., Smith, A. F. M., Hierarchical Bayesian analysis of Change point problems [J]. Applied Statistics, 1992,41: 389-405.
  • 9Stephens, D. A.. Bayesian Retrospective Multiple- change Point Identification [J]. Applied Statistics, 1994,43 : 159-178.
  • 10Lee, C. B.. Bayesian Analysis of a Change point in Exponential Families with Applications [J]. Computa tional Statistics and Data Analysis, 1998,. 27:195 - 208.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部